コード例 #1
0
ファイル: electra_model.py プロジェクト: TharinduDR/InfoMiner
    def __init__(self, config, weight=None):
        super(ElectraForSequenceClassification, self).__init__(config)
        self.num_labels = config.num_labels

        self.bert = ElectraModel(config)
        self.classifier = ElectraClassificationHead(config)

        self.init_weights()
コード例 #2
0
    def __init__(self, config, weight=None):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.electra = ElectraModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()
コード例 #3
0
    def __init__(self, config):
        super().__init__()

        self._mask_prob = config.mask_prob
        self._mask_token_id = config.mask_token_id
        self._masking_strategy = config.masking_strategy

        self.backbone = ElectraModel(config)
        self.generator_head = GeneratorHead(config)
コード例 #4
0
    def __init__(self, config, weight=None):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.electra = ElectraModel(config)
        self.pooler = ElectraPooler(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
        self.weight = weight
コード例 #5
0
    def __init__(self, config, pos_weight=None):
        super(ElectraForMultiLabelSequenceClassification,
              self).__init__(config)
        self.num_labels = config.num_labels
        self.pos_weight = pos_weight

        self.electra = ElectraModel(config)
        self.pooler = ElectraPooler(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
コード例 #6
0
ファイル: models.py プロジェクト: clarinsi/geobert
    def __init__(self, config, pos_weight=None, regression=False, loss_fct=None):
        super(ElectraForMultiLabelSequenceClassification, self).__init__(config)
        self.num_labels = config.num_labels
        self.pos_weight = pos_weight

        self.electra = ElectraModel(config)
        self.pooler = ElectraPooler(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.regression = regression
        if loss_fct is None:
            if self.regression:
                self.loss_fct = torch.nn.MSELoss()
            else:
                self.loss_fct = torch.nn.BCEWithLogitsLoss(pos_weight=self.pos_weight)
        elif loss_fct == "MAELoss":
            self.loss_fct = torch.nn.L1Loss()
        elif loss_fct == "MSELoss":
            self.loss_fct = torch.nn.MSELoss()
        self.init_weights()