def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels): model = BeitForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
def create_and_check_for_masked_lm(self, config, pixel_values, labels): model = BeitForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected sequence length = num_patches image_size = to_2tuple(self.image_size) patch_size = to_2tuple(self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, self.vocab_size))