コード例 #1
0
    config.intermediate_size = 3072
    config.max_position_embeddings = 512
    config.vocab_size = 32000

    logger.info("USE_NSP: {}".format(USE_NSP))
    if USE_NSP:
        model = BertForPreTraining(config)
    else:
        model = BertForPreTrainingWithoutNSP(config)
    model.to(device)

    logger.info(config)
    logger.info(model)

    optimizer = AdamW(model.parameters(), lr=2e-5)
    model.train()
    train_losses = []
    for i in range(1, MAX_STEPS + 1):
        optimizer.zero_grad()
        sent_pairs = create_sent_pairs(sents_list, batch_size=BATCH_SIZE)
        encoded = encode_sent_pairs(sent_pairs)
        res = model(
            encoded["input_ids"].to(device),
            token_type_ids=None,
            attention_mask=encoded["attention_mask"].to(device),
            labels=encoded["labels"].to(device),
            next_sentence_label=encoded["next_sentence_label"].to(device),
        )
        loss = res.loss
        if i % 100 == 0:
            logger.info("training step {}, loss {}".format(i, loss))
コード例 #2
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)"
    )  # TODO: --file-num 이름이 어울리지 않음
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument('--num_eval_steps', default=100)
    parser.add_argument('--num_save_steps', default=200)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=0.00176,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    args = parser.parse_args()

    pregenerated_data = config['data_dir'] / "corpus/train"
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"  # TODO: 어디에 있지?
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, "
        f"share_type: {args.share_type}")

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    seed_everything(args.seed)
    tokenizer = BertTokenizer(vocab_file=config['albert_vocab_path'])
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = BertConfig.from_pretrained(str(config['albert_config_path']),
                                             share_type=args.share_type)
    model = BertForPreTraining(config=bert_config)
    # model = BertForMaskedLM.from_pretrained(config['checkpoint_dir'] / 'checkpoint-580000')
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer,
                                        warmup_steps=args.warmup_steps,
                                        t_total=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level=args.fp16_opt_level)
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    mask_metric = LMAccuracy()
    sop_metric = LMAccuracy()
    tr_mask_acc = AverageMeter()
    tr_sop_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_mask_loss = AverageMeter()
    tr_sop_loss = AverageMeter()
    loss_fct = CrossEntropyLoss(ignore_index=-1)

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask)
                prediction_scores = outputs[0]
                seq_relationship_score = outputs[1]

                masked_lm_loss = loss_fct(
                    prediction_scores.view(-1, bert_config.vocab_size),
                    lm_label_ids.view(-1))
                next_sentence_loss = loss_fct(
                    seq_relationship_score.view(-1, 2), is_next.view(-1))
                loss = masked_lm_loss + next_sentence_loss

                mask_metric(logits=prediction_scores.view(
                    -1, bert_config.vocab_size),
                            target=lm_label_ids.view(-1))
                sop_metric(logits=seq_relationship_score.view(-1, 2),
                           target=is_next.view(-1))

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0))
                tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0))
                tr_loss.update(loss.item(), n=1)
                tr_mask_loss.update(masked_lm_loss.item(), n=1)
                tr_sop_loss.update(next_sentence_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    lr_scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['mask_acc'] = tr_mask_acc.avg
                    train_logs['sop_acc'] = tr_sop_acc.avg
                    train_logs['mask_loss'] = tr_mask_loss.avg
                    train_logs['sop_loss'] = tr_sop_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                    f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_mask_acc.reset()
                    tr_sop_acc.reset()
                    tr_loss.reset()
                    tr_mask_loss.reset()
                    tr_sop_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = config[
                            'checkpoint_dir'] / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())

                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
コード例 #3
0
def train(args):

    if not os.path.exists(args.save_dir): os.mkdir(args.save_dir)

    if args.gpu != '-1' and torch.cuda.is_available():
        device = torch.device('cuda')
        torch.cuda.set_rng_state(torch.cuda.get_rng_state())
        torch.backends.cudnn.deterministic = True
    else:
        device = torch.device('cpu')

    config = {
        'train': {
            'unchanged_variable_weight': 0.1,
            'buffer_size': 5000
        },
        'encoder': {
            'type': 'SequentialEncoder'
        },
        'data': {
            'vocab_file': 'data/vocab.bpe10000/vocab'
        }
    }

    train_set = Dataset('data/preprocessed_data/train-shard-*.tar')
    dev_set = Dataset('data/preprocessed_data/dev.tar')

    vocab = Vocab.load('data/vocab.bpe10000/vocab')

    if args.decoder:
        vocab_size = len(vocab.all_subtokens) + 1
    else:
        vocab_size = len(vocab.source_tokens) + 1

    max_iters = args.max_iters
    lr = args.lr
    warm_up = args.warm_up

    batch_size = 4096
    effective_batch_size = args.batch_size

    max_embeds = 1000 if args.decoder else 512

    bert_config = BertConfig(vocab_size=vocab_size,
                             max_position_embeddings=max_embeds,
                             num_hidden_layers=6,
                             hidden_size=256,
                             num_attention_heads=4)
    model = BertForPreTraining(bert_config)

    if args.restore:
        state_dict = torch.load(os.path.join(args.save_dir, args.res_name))
        model.load_state_dict(state_dict['model'])
        batch_count = state_dict['step']
        epoch = state_dict['epoch']

    model.train()
    model.to(device)

    if len(args.gpu) > 1 and device == torch.device('cuda'):
        model = nn.DataParallel(model)

    def lr_func(step):
        if step > warm_up:
            return (max_iters - step) / (max_iters - warm_up)
        else:
            return (step / warm_up)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=lr,
                                 eps=1e-6,
                                 weight_decay=0.01)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                  lr_lambda=lr_func,
                                                  last_epoch=-1)
    loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none')

    if args.restore:
        optimizer.load_state_dict(state_dict['optim'])
        scheduler.load_state_dict(state_dict['scheduler'])

    batch_count = 0
    epoch = 0
    cum_loss = 0.0

    while True:
        # load training dataset, which is a collection of ASTs and maps of gold-standard renamings
        train_set_iter = train_set.batch_iterator(
            batch_size=batch_size,
            return_examples=False,
            config=config,
            progress=True,
            train=True,
            max_seq_len=512,
            num_readers=args.num_readers,
            num_batchers=args.num_batchers)
        epoch += 1
        print("Epoch {}".format(epoch))

        loss = 0
        num_seq = 0

        optimizer.zero_grad()

        for batch in train_set_iter:
            if args.decoder:
                input_ids = batch.tensor_dict['prediction_target'][
                    'src_with_true_var_names']
            else:
                input_ids = batch.tensor_dict['src_code_tokens']

            attention_mask = torch.ones_like(input_ids)
            attention_mask[input_ids == 0] = 0.0

            assert torch.max(input_ids) < vocab_size
            assert torch.min(input_ids) >= 0

            if input_ids.shape[0] > max_embeds:
                print(
                    "Warning - length {} is greater than max length {}. Skipping."
                    .format(input_ids.shape[0], max_embeds))
                continue

            input_ids, labels = mask_tokens(inputs=input_ids,
                                            mask_token_id=vocab_size - 1,
                                            vocab_size=vocab_size,
                                            mlm_probability=0.15)

            input_ids[attention_mask == 0] = 0
            labels[attention_mask == 0] = -100

            if torch.cuda.is_available():
                input_ids = input_ids.cuda()
                labels = labels.cuda()
                attention_mask = attention_mask.cuda()

            outputs = model(input_ids=input_ids,
                            attention_mask=attention_mask,
                            masked_lm_labels=labels)

            unreduced_loss = loss_fn(
                outputs[0].view(-1, bert_config.vocab_size),
                labels.view(-1)).reshape(labels.shape) / (
                    torch.sum(labels != -100, axis=1).unsqueeze(1) + 1e-7)
            loss += unreduced_loss.sum()
            num_seq += input_ids.shape[0]

            if num_seq > effective_batch_size:
                batch_count += 1
                loss /= num_seq
                cum_loss += loss.item()

                if batch_count % 20 == 0:
                    print("{} batches, Loss : {:.4}, LR : {:.6}".format(
                        batch_count, cum_loss / 20,
                        scheduler.get_lr()[0]))
                    cum_loss = 0.0

                if batch_count % 10000 == 0:
                    fname1 = os.path.join(
                        args.save_dir, 'bert_{}_step_{}.pth'.format(
                            ('decoder' if args.decoder else 'encoder'),
                            batch_count))
                    fname2 = os.path.join(
                        args.save_dir, 'bert_{}.pth'.format(
                            ('decoder' if args.decoder else 'encoder'),
                            batch_count))

                    state = {
                        'epoch': epoch,
                        'step': batch_count,
                        'model': model.module.state_dict(),
                        'optim': optimizer.state_dict(),
                        'scheduler': scheduler.state_dict()
                    }

                    torch.save(state, fname1)
                    torch.save(state, fname2)

                    print("Saved file to path {}".format(fname1))
                    print("Saved file to path {}".format(fname2))

                loss.backward()
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad()

                loss = 0
                num_seq = 0

            if batch_count == max_iters:
                print(f'[Learner] Reached max iters', file=sys.stderr)
                exit()

        print("Max_len = {}".format(max_len))
        break