コード例 #1
0
def run_batch(batch_text: List[str], model: BertForSequenceClassification,
              tokenizer: BertTokenizerFast) -> List[Dict]:
    """
    Run model classifier for a list of paragraphs.

    :param batch_text: List of paragraph strings.
    :param model: The paragraph classifier.
    :param tokenizer: The BERT tokenizer.
    :return: Classification result represented using a dict.
    """
    all_tokenized, batch = paragraphs2batch(batch_text, tokenizer)

    model.eval()
    # Make sure they are on the right dev
    for key, value in batch.items():
        batch[key] = value.to(torch_dev())

    outputs = model(**batch, return_dict=True).logits

    scores = get_classification_scores(outputs)
    results = [{
        'text': batch_text[i],
        'tokens': all_tokenized[i],
        'scores': scores[i]
    } for i in range(len(batch_text))]

    return results
コード例 #2
0
def evalate(eval_dataset,
            model: BertForSequenceClassification,
            batch_size=batch_size):
    model.eval()
    eval_sampler = RandomSampler(eval_dataset)
    eval_loader = DataLoader(eval_dataset,
                             sampler=eval_sampler,
                             batch_size=batch_size)
    tr_acc = 0
    if cuda:
        torch.cuda.empty_cache()
    for step, batch in tqdm(enumerate(eval_loader)):
        inputs = {
            'input_ids': batch[1],
            'token_type_ids': batch[2],
            'attention_mask': batch[3],
            'labels': batch[0]
        }
        outputs = model(**inputs)
        # loss = outputs[0]
        logits = outputs[1]

        # tr_loss += loss.item()

        # 计算准确率
        _, pred = logits.max(1)
        number_corr = (pred == batch[0].view(-1)).long().sum().item()
        tr_acc += number_corr

    return tr_acc / len(eval_dataset)
コード例 #3
0
 def create_and_check_for_sequence_classification(
     self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     config.num_labels = self.num_labels
     model = BertForSequenceClassification(config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
コード例 #4
0
def make_predictions(
        sentence_array: np.array, model: BertForSequenceClassification,
        tokenizer: BertTokenizer, device: torch.device,
        hyperparameter_dict: dict) -> typing.Tuple[np.array, np.array]:
    """
    Make predictions on DataFrame containing sentences with given model

    :param model: Torch model
    :param tokenizer: BERT-base tokenizer
    :param device: Torch device
    :param max_length: Max length of input sequence (for padding)
    :param hyperparameter_dict: Dictionary of model hyperparameters
    :return: NumPy array of label predictions
    """
    # Prepare data
    encoded_sentences = []

    for sentence in sentence_array:
        enc_sent_as_list = tokenizer.encode(sentence, add_special_tokens=True)
        encoded_sentences.append(enc_sent_as_list)

    input_array, input_attention_mask_array = _create_sentence_input_arrays(
        encoded_sentences, hyperparameter_dict['max_length'])

    input_tensor = torch.tensor(input_array)
    input_attention_mask_tensor = torch.tensor(input_attention_mask_array)

    input_dataset = TensorDataset(input_tensor, input_attention_mask_tensor)

    input_data_loader = DataLoader(
        input_dataset, batch_size=hyperparameter_dict['batch_size'])

    # Run model

    model.eval()

    logit_list = []

    for batch in input_data_loader:

        batch_input_ids = batch[0].to(device)
        batch_attention_mask = batch[1].to(device)

        with torch.no_grad():
            outputs = model(input_ids=batch_input_ids,
                            token_type_ids=None,
                            attention_mask=batch_attention_mask)

        logits = outputs[0]
        logit_list.append(logits)

    logits_tensor = torch.cat(logit_list, dim=0)
    prob_tensor = torch.softmax(logits_tensor, dim=1)

    return np.array(logits_tensor.cpu()), np.array(prob_tensor.cpu())
コード例 #5
0
 def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
     config.num_labels = self.num_labels
     model = BertForSequenceClassification(config)
     model.eval()
     loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
     result = {
         "loss": loss,
         "logits": logits,
     }
     self.parent.assertListEqual(
         list(result["logits"].size()),
         [self.batch_size, self.num_labels])
     self.check_loss_output(result)
コード例 #6
0
ファイル: bert.py プロジェクト: ghajduk3/COLI
def test_classifier(model: BertForSequenceClassification,
                    dataset: TensorDataset, batch_size: int):

    device = select_device()

    prediction_dataloader = DataLoader(dataset,
                                       sampler=SequentialSampler(dataset),
                                       batch_size=batch_size)

    print("")
    print("Running Prediction...")

    model.to(device)

    model.eval()

    predictions, true_labels = [], []

    for batch in prediction_dataloader:

        b_input_ids = batch[0].to(device)
        b_input_mask = batch[1].to(device)
        b_labels = batch[2]

        with torch.no_grad():

            outputs = model(b_input_ids,
                            token_type_ids=None,
                            attention_mask=b_input_mask)

        logits = outputs.logits

        logits = logits.detach().cpu().numpy()
        label_ids = b_labels.numpy()

        #predictions.append(logits)
        predictions.extend(list(np.argmax(logits, axis=1).flatten()))
        true_labels.extend(list(label_ids))

    print('DONE.')

    return predictions, true_labels
コード例 #7
0
def model_infer(config,test_load,k):
    
    print("***********load model weight*****************")

    model_config = model_config = BertConfig()
    model_config.vocab_size = len(pd.read_csv('../user_data/vocab',names=["score"]))
    
    model = BertForSequenceClassification(config=model_config)
    model.load_state_dict(torch.load('../user_data/save_model/{}_best_model.pth.tar'.format(config.model_name))['status'])
    model = model.to(config.device)

    print("***********make predict for test file*****************")

    
    model.eval()
    predict_all = []

    with torch.no_grad():
        for batch, (input_ids, token_type_ids, attention_mask, label) in enumerate(test_load):
            input_ids = input_ids.to(config.device)
            attention_mask = attention_mask.to(config.device)
            token_type_ids = token_type_ids.to(config.device)

            outputs = model(input_ids=input_ids, attention_mask=attention_mask,
                            token_type_ids=token_type_ids)

            logits = outputs.logits
            pred_pob = torch.nn.functional.softmax(logits, dim=1)[:, 1]
            predict_all.extend(list(pred_pob.detach().cpu().numpy()))
    
#     submit_result(predict)
    if k==0:
        df=pd.DataFrame(predict_all,columns=["{}_socre".format(k+1)])
        df.to_csv('./{}_result.csv'.format(config.model_name),index=False)
    else:
        df=pd.read_csv('./{}_result.csv'.format(config.model_name))
        df["{}_socre".format(k+1)] = predict_all
        df.to_csv('./{}_result.csv'.format(config.model_name),index=False)
    
    print("***********done*****************")
コード例 #8
0
def inference_no_args(
    data: TensorDataset,
    loader: DataLoader,
    logger: Logger,
    model: BertForSequenceClassification,
    batch_size: int,
) -> List[float]:
    device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
    predictions = []
    states = []
    logger.info("***** Running inference {} *****".format(""))
    logger.info("  Num examples = %d", len(data))
    logger.info("  Batch size = %d", batch_size)
    model.to(device)
    model.eval()
    for batch in tqdm(loader, desc="Inference"):
        batch = tuple(t.to(device) for t in batch)
        logits, state = model.forward(input_ids=batch[0], attention_mask=batch[1], token_type_ids=batch[2],
                                      output_hidden_states=True)
        predictions.extend(logits.cpu())
        states.extend(state[-1][:, 0, :].cpu())
    return predictions, states
コード例 #9
0
            'Epoch: {}/{} Train'.format(epoch + 1, num_epochs))
        train_iter.set_postfix(train_loss=train_loss /
                               train_count, train_acc=np.mean(train_acc))
    if not os.path.isdir('./model/judger_textcnn/{}x{}'.format(STD_ID_1, STD_ID_2)):
        os.makedirs('./model/judger_textcnn/{}x{}'.format(STD_ID_1, STD_ID_2))
    torch.save(model, "./model/judger_textcnn/{}x{}/textcnn_judger_{}x{}__{}.pth".format(STD_ID_1, STD_ID_2, STD_ID_1, STD_ID_2, epoch + 1 + save_offset))

    with torch.no_grad():
        eval_count = 0
        eval_loss = 0
        eval_acc = []
        eval_iter = tqdm(dataiter_eval)
        for sentences, attn_masks, std_ids, ext_id, label in eval_iter:
            model.eval()
            textCNN.eval()
            model_.eval()
            if torch.cuda.is_available():
                sentences = Variable(sentences.cuda())
                attn_masks = Variable(attn_masks.cuda())
                std_ids = Variable(std_ids.cuda())
            else:
                sentences = Variable(sentences)
                attn_masks = Variable(attn_masks)
                std_ids = Variable(std_ids)

            em = model(input_ids=sentences, attention_mask=attn_masks)[0]
            outputs = textCNN(em)
            loss = criterion(
                outputs.view(-1, outputs.shape[1]), std_ids.view(-1))

            loss = loss.mean()
コード例 #10
0
ファイル: classifier.py プロジェクト: ayaoanifrani/NLP-TASBA
class Classifier:
    """The Classifier"""

    #############################################
    def __init__(self,
                 train_batch_size=16,
                 eval_batch_size=8,
                 max_length=128,
                 lr=2e-5,
                 eps=1e-6,
                 n_epochs=11):
        """

        :param train_batch_size: (int) Training batch size
        :param eval_batch_size: (int) Batch size while using the `predict` method.
        :param max_length: (int) Maximum length for padding
        :param lr: (float) Learning rate
        :param eps: (float) Adam optimizer epsilon parameter
        :param n_epochs: (int) Number of epochs to train
        """
        # model parameters
        self.train_batch_size = train_batch_size
        self.eval_batch_size = eval_batch_size
        self.max_length = max_length
        self.lr = lr
        self.eps = eps
        self.n_epochs = n_epochs

        # Information to be set or updated later
        self.trainset = None
        self.categories = None
        self.labels = None
        self.model = None

        # Tokenizer
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

        # The model #
        #   We first need to specify some configurations to the model
        configs = BertConfig.from_pretrained(
            'bert-base-uncased', num_labels=3,
            type_vocab_size=8)  # BERT configuration
        self.model = BertForSequenceClassification(configs)

        #   We are changing the header classifier of the model (Which is initially a simple fully connect layer layer)
        clf = Net()
        self.model.classifier = clf

        self.model.to(
            device
        )  # putting the model on GPU if available otherwise device is CPU

    def preprocess(self, sentences):
        """
        The preprocessing function
        :param sentences: List of all sentences to be given at once.
        :return: List of preprocessed sentences.
        """

        preprocessed = []
        for sentence in tqdm(sentences):

            assert isinstance(sentence, str)
            doc = nlp(str(sentence))
            tokens = []
            for token in doc:
                if (not token.is_punct) or (token.text not in [
                        ',', '-', '.', "'", '!'
                ]):  # Some punctuations can be interesting for BERT
                    tokens.append(token.text)
            tokens = (' '.join(tokens)).lower().replace(" '", "'")
            preprocessed.append(tokens)

        return preprocessed

    def question(self, category):
        """
        Computes the questions corresponding to each category
        :param category: (str) The category/aspect
        :return: (str) computed question using the QA-M task
        """
        assert category in self.categories

        if category == 'AMBIENCE#GENERAL':
            return "what do you think of the ambience of it ?"
        elif category == 'DRINKS#PRICES' or category == 'FOOD#PRICES' or category == 'RESTAURANT#PRICES':
            return "what do you think of the price of it ?"
        elif category == 'DRINKS#QUALITY' or category == 'FOOD#QUALITY':
            return "what do you think of the quality of it ?"
        elif category == 'DRINKS#STYLE_OPTIONS':
            return "what do you think of drinks ?"
        elif category == 'FOOD#STYLE_OPTIONS':
            return "what do you think of the food ?"
        elif category == 'LOCATION#GENERAL':
            return "what do you think of the location of it ?"
        elif category == 'RESTAURANT#GENERAL' or category == 'RESTAURANT#MISCELLANEOUS':
            return "what do you think of the restaurant ?"
        elif category == 'SERVICE#GENERAL':
            return "what do you think of the service of it ?"

    def train(self, trainfile):
        """Trains the classifier model on the training set stored in file trainfile"""

        # Loading the data and splitting up its information in lists
        print("\n   Loading training data...")
        trainset = np.genfromtxt(trainfile,
                                 delimiter='\t',
                                 dtype=str,
                                 comments=None)
        self.trainset = trainset
        n = len(trainset)
        targets = trainset[:, 0]
        categories = trainset[:, 1]
        self.labels = list(Counter(targets).keys())  # label names
        self.categories = list(Counter(categories).keys())  # category names
        start_end = [[int(x) for x in w.split(':')] for w in trainset[:, 3]]
        # target words
        words_of_interest = [
            trainset[:, 4][i][start_end[i][0]:start_end[i][1]]
            for i in range(n)
        ]
        # sentences to be classified
        sentences = [str(s) for s in trainset[:, 4]]

        # Preprocessing the text data
        print("   Preprocessing the text data...")
        sentences = self.preprocess(sentences)

        # Computing question sequences
        print("   Computing questions...")
        questions = [self.question(categories[i]) for i in tqdm(range(n))]

        # Tokenization
        attention_masks = []
        input_ids = []
        token_type_ids = []
        labels = []
        for word, question, answer in zip(words_of_interest, questions,
                                          sentences):
            encoded_dict = self.tokenizer.encode_plus(
                answer,
                question + ' ' + word.lower(),
                add_special_tokens=True,  # Add '[CLS]' and '[SEP]' tokens
                max_length=self.max_length,  # Pad & truncate all sequences
                pad_to_max_length=True,
                return_attention_mask=True,  # Construct attention masks
                return_tensors='pt',  # Return pytorch tensors.
            )
            attention_masks.append(encoded_dict['attention_mask'])
            input_ids.append(encoded_dict['input_ids'])
            token_type_ids.append(encoded_dict['token_type_ids'])
        attention_masks = torch.cat(attention_masks, dim=0)
        input_ids = torch.cat(input_ids, dim=0)
        token_type_ids = torch.cat(token_type_ids, dim=0)

        # Converting polarities into integers (0: positive, 1: negative, 2: neutral)
        for target in targets:
            if target == 'positive':
                labels.append(0)
            elif target == 'negative':
                labels.append(1)
            elif target == 'neutral':
                labels.append(2)
        labels = torch.tensor(labels)

        # Pytorch data iterators
        train_data = TensorDataset(input_ids, attention_masks, token_type_ids,
                                   labels)
        train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      batch_size=self.train_batch_size,
                                      sampler=train_sampler)

        # Optimizer and scheduler (we are using a linear scheduler without warm up)
        no_decay = ['bias', 'gamma',
                    'beta']  # These parameters are not going to be decreased
        optimizer_parameters = [{
            'params': [
                p for n, p in self.model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params': [
                p for n, p in self.model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0
        }]
        optimizer = AdamW(optimizer_parameters, lr=self.lr, eps=self.eps)
        total_steps = len(train_dataloader) * self.n_epochs
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=0, num_training_steps=total_steps)

        # Training
        initial_t0 = time.time()
        for epoch in range(self.n_epochs):
            print('\n   ======== Epoch %d / %d ========' %
                  (epoch + 1, self.n_epochs))
            print('   Training...\n')
            t0 = time.time()
            total_train_loss = 0

            self.model.train()
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids_, input_mask_, segment_ids_, label_ids_ = batch

                self.model.zero_grad()
                loss, _ = self.model(input_ids_,
                                     token_type_ids=segment_ids_,
                                     attention_mask=input_mask_,
                                     labels=label_ids_)
                total_train_loss += loss.item()

                loss.backward()
                # clip gradient norm
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)

                optimizer.step()
                scheduler.step()

            avg_train_loss = total_train_loss / len(train_dataloader)
            training_time = format_time(time.time() - t0)
            # print("     Average training loss: {0:.2f}".format(avg_train_loss))
            print("     Training epoch duration: {:}".format(training_time))
        print("     Total training time: {:}".format(
            format_time(time.time() - initial_t0)))

    def predict(self, datafile):
        """Predicts class labels for the input instances in file 'datafile'
        Returns the list of predicted labels
        """

        # Loading the data and splitting up its information in lists
        evalset = np.genfromtxt(datafile,
                                delimiter='\t',
                                dtype=str,
                                comments=None)
        m = len(evalset)
        categories = evalset[:, 1]
        start_end = [[int(x) for x in w.split(':')] for w in evalset[:, 3]]
        # target words
        words_of_interest = [
            evalset[:, 4][i][start_end[i][0]:start_end[i][1]] for i in range(m)
        ]
        # sentences to be classified
        sentences = [str(s) for s in evalset[:, 4]]

        # Preprocessing the text data
        print("\n   Preprocessing the text data...")
        sentences = self.preprocess(sentences)

        # Computing question sequences
        print("   Computing questions...")
        questions = [self.question(categories[i]) for i in tqdm(range(m))]

        # Tokenization
        attention_masks = []
        input_ids = []
        token_type_ids = []
        for word, question, answer in zip(words_of_interest, questions,
                                          sentences):
            encoded_dict = self.tokenizer.encode_plus(
                answer,
                question + ' ' + word.lower(),
                add_special_tokens=True,  # Add '[CLS]' and '[SEP]'
                max_length=self.max_length,  # Pad & truncate all sequences
                pad_to_max_length=True,
                return_attention_mask=True,  # Construct attention masks
                return_tensors='pt',  # Return pytorch tensors.
            )
            attention_masks.append(encoded_dict['attention_mask'])
            input_ids.append(encoded_dict['input_ids'])
            token_type_ids.append(encoded_dict['token_type_ids'])
        attention_masks = torch.cat(attention_masks, dim=0)
        input_ids = torch.cat(input_ids, dim=0)
        token_type_ids = torch.cat(token_type_ids, dim=0)

        # Pytorch data iterators
        eval_data = TensorDataset(input_ids, attention_masks, token_type_ids)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     batch_size=self.eval_batch_size,
                                     sampler=eval_sampler)

        # Prediction
        named_labels = []
        self.model.eval()
        for batch in eval_dataloader:
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids = batch

            with torch.no_grad():
                logits = self.model(input_ids,
                                    token_type_ids=segment_ids,
                                    attention_mask=input_mask)[0]

            logits = softmax(logits, dim=-1)
            logits = logits.detach().cpu().numpy()
            outputs = np.argmax(logits, axis=1)

            # converting integer labels into named labels
            for label in outputs:
                if label == 0:
                    named_labels.append('positive')
                elif label == 1:
                    named_labels.append('negative')
                elif label == 2:
                    named_labels.append('neutral')

        return np.array(named_labels)
コード例 #11
0
def train_and_test():
    # prepare data
    fileNameList = glob.glob(
        'C:/YYQ/PGproject/PreProcessing/processed_features_facenet/*.pkl')
    # print(fileNameList)
    # basic features
    # text-list and tf-idf
    text_list = []
    labels = []
    visual_features = []
    audio_features = []
    for file_name in fileNameList:
        data_point = pkl.load(open(file_name, 'rb'))
        clip_name, label, transcription, smoothed_seq = data_point[
            0], data_point[1], data_point[2], data_point[3]
        # print(label, transcription)
        # continue
        labels.append(label)
        text_list.append(transcription)
        # average visual features
        # visual_seq = np.stack([w['landmark_feature'] for w in smoothed_seq], axis=0)
        visual_seq = np.stack(
            [w['facenet_feature'].squeeze() for w in smoothed_seq], axis=0)
        # visual_seq = scale(visual_seq)
        # visual_seq = visual_seq - np.mean(visual_seq, axis=0)
        # print(visual_seq.shape)
        # visual_mean = np.mean(visual_seq, axis=0)
        visual_features.append(visual_seq)
        # average audio features
        audio_seq = np.stack([w['audio_grp'] for w in smoothed_seq], axis=0)
        # audio_seq = scale(audio_seq)
        # print(audio_seq.shape)
        # audio_mean = np.mean(audio_seq, axis=0)
        audio_features.append(audio_seq)

    # exit()
    print(text_list)
    lens = [len(a.split()) for a in text_list]
    print(min(lens), max(lens))
    exit()

    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    pg = tokenizer.batch_encode_plus(text_list,
                                     max_length=128,
                                     pad_to_max_length=True)
    '''print(len(pg))
    for k in pg.keys():
        print(k, len(pg[k]), [len(kk) for kk in pg[k]])'''

    x = pg['input_ids']
    token_type_ids = pg['token_type_ids']
    attention_mask = pg['attention_mask']
    '''for xx in x:
        print(xx)'''

    x, token_type_ids, attention_mask = np.array(x), np.array(
        token_type_ids), np.array(attention_mask)
    labels = np.array(labels)

    skf = StratifiedKFold(n_splits=5)
    cv5_ids = list(skf.split(x, labels))

    sp = cv5_ids[0]
    train_l, train_labels = x[sp[0]], labels[sp[0]]
    # train_data, train_labels = sm.fit_sample(train_data, train_labels)
    test_l, test_labels = x[sp[1]], labels[sp[1]]
    print(train_l.shape)

    train_token_type_ids, test_token_type_ids, train_attention_mask, test_attention_mask = token_type_ids[sp[0]], \
                                           token_type_ids[sp[1]], attention_mask[sp[0]], attention_mask[sp[1]]

    # shuffle training data for batch reading
    n_train = len(train_l)
    n_eval = len(test_l)
    perm = np.random.permutation(n_train)
    train_l = train_l[perm]
    train_labels = np.array(train_labels)[perm]
    train_token_type_ids, train_attention_mask = train_token_type_ids[
        perm], train_attention_mask[perm]

    train_l, test_l, train_labels, test_labels, train_token_type_ids, test_token_type_ids = torch.LongTensor(train_l), \
                                                                            torch.LongTensor(test_l), \
                                                                            torch.LongTensor(train_labels), \
                                                                            torch.LongTensor(test_labels), \
                                                                            torch.LongTensor(train_token_type_ids), \
                                                                            torch.LongTensor(test_token_type_ids)

    train_attention_mask, test_attention_mask = torch.FloatTensor(train_attention_mask), \
                                                torch.FloatTensor(test_attention_mask)

    # model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=3).to('cuda')
    config = BertConfig.from_pretrained('bert-base-uncased', num_labels=3)
    model = BertForSequenceClassification(config).to('cuda')
    # print(model(train_l[:32], token_type_ids=train_token_type_ids[:32], attention_mask=train_attention_mask[:32], labels=train_labels[:32])[1])

    eval_every = 5
    batch_size = 32
    test_batch_size = 8
    max_epochs = 500
    t_total = math.ceil(n_train / batch_size) * max_epochs
    lr = 2e-5
    epsilon = 1e-8
    max_grad_norm = 1.0
    weight_decay = 0.0

    optimizer, scheduler = get_optimizers(model,
                                          learning_rate=lr,
                                          adam_epsilon=epsilon,
                                          weight_decay=weight_decay,
                                          num_training_steps=t_total)

    # loss_fn = torch.nn.CrossEntropyLoss().cuda()
    model.train()
    model.zero_grad()

    for ep in range(max_epochs):
        idx = 0
        avg_loss = 0
        n_batch = 0
        model.train()
        while idx < n_train:
            optimizer.zero_grad()
            batch_l = train_l[idx:(idx + batch_size)].to('cuda')
            batch_ty = train_token_type_ids[idx:(idx + batch_size)].to('cuda')
            batch_am = train_attention_mask[idx:(idx + batch_size)].to('cuda')
            ans = train_labels[idx:(idx + batch_size)].to('cuda')
            idx += batch_size
            preds = model(input_ids=batch_l,
                          token_type_ids=batch_ty,
                          attention_mask=batch_am,
                          labels=ans)
            loss = preds[0]
            # print(preds, ans)
            loss.backward()
            # print(loss.data.cpu().numpy())
            avg_loss += loss.data.cpu().numpy()
            n_batch += 1.

            torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
            optimizer.step()
            scheduler.step()
            model.zero_grad()

        avg_loss = avg_loss / n_batch
        print("epoch: %d avg_loss: %f" % (ep + 1, avg_loss))

        del batch_l, batch_ty, batch_am
        torch.cuda.empty_cache()
        # time.sleep(20)

        if ep % eval_every == 0:
            idx = 0
            model.eval()
            eval_preds = np.array([])
            while idx < n_eval:
                test_batch_l = test_l[idx:(idx + test_batch_size)].to('cuda')
                test_batch_ty = test_token_type_ids[idx:(
                    idx + test_batch_size)].to('cuda')
                test_batch_am = test_attention_mask[idx:(
                    idx + test_batch_size)].to('cuda')
                test_ans = test_labels[idx:(idx + test_batch_size)].to('cuda')
                # time.sleep(20)
                # exit()
                test_pred = model(input_ids=test_batch_l,
                                  token_type_ids=test_batch_ty,
                                  attention_mask=test_batch_am,
                                  labels=test_ans)
                scores = test_pred[1]
                _, batch_eval_preds = scores.data.cpu().max(1)
                eval_preds = np.concatenate((eval_preds, batch_eval_preds),
                                            axis=-1)
                idx += test_batch_size
            # metrics
            precison, recall, fscore, support = precision_recall_fscore_support(
                test_labels.cpu().numpy(),
                eval_preds,
                labels=[0, 1, 2],
                average=None)
            '''scores = model(train_data, train_lens)
            _, train_preds = scores.data.cpu().max(1)
            print("training set: %f" % (float(sum(train_preds.numpy() == train_labels.cpu().numpy())) / len(train_preds.numpy())))
            print(eval_preds.numpy())'''
            print(
                float(sum(eval_preds == test_labels.cpu().numpy())) /
                len(eval_preds))
            print(precison, recall, fscore, support)
コード例 #12
0
model.cuda()
model_1.cuda()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.nn.DataParallel(model, device_ids=[0, 1, 2, 3]).cuda()
model_1 = torch.nn.DataParallel(model_1, device_ids=[0, 1, 2, 3]).cuda()
model.to(device)
model_1.to(device)

model_dict = torch.load("./model/supreme/l{}/bert_supreme_{}.pth".format(
    LABEL_ID, EVAL_EPOCH)).module.state_dict()
model.module.load_state_dict(model_dict)

# %%
with torch.no_grad():
    model.eval()
    model_1.eval()
    correct_dict = []
    err_dict = []
    eval_correct_num = 0
    eval_list_iter = tqdm(eval_list)
    for idx, item in enumerate(eval_list_iter):
        cur_eval_result_scores = torch.tensor([])
        eval_list_iter.set_description('{}/{}'.format(idx + 1, len(eval_list)))
        eval_list_iter.set_postfix(correct_num=eval_correct_num,
                                   eval_acc=eval_correct_num / (idx + 1))

        T = tokenizer(item[3],
                      add_special_tokens=True,
                      max_length=100,
                      padding='max_length',
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default='/hdd/lujunyu/dataset/multi_turn_corpus/ubuntu/',
                        type=str,
                        required=False,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--task_name",
                        default='ubuntu',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default='/hdd/lujunyu/model/chatbert/ubuntu_without_pretraining/',
                        type=str,
                        required=False,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--init_model_name",
                        default='bert-base-uncased',
                        type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument("--do_lower_case",
                        default=True,
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--data_augmentation",
                        default=False,
                        action='store_true',
                        help="Whether to use augmentation")
    parser.add_argument("--max_seq_length",
                        default=256,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=True,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_test",
                        default=True,
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument("--train_batch_size",
                        default=500,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=500,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-3,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=10.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_steps",
                        default=0.0,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--weight_decay",
                        default=1e-3,
                        type=float,
                        help="weight_decay")
    parser.add_argument("--save_checkpoints_steps",
                        default=8000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=20,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    bert_config = BertConfig.from_pretrained(args.init_model_name, num_labels=2)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
            args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        if args.do_train:
            raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    else:
        os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.init_model_name, do_lower_case=args.do_lower_case)
    if args.data_augmentation:
        train_dataset = UbuntuDatasetForSP(
            file_path=os.path.join(args.data_dir, "train_augment_3.txt"),
            max_seq_length=args.max_seq_length,
            tokenizer=tokenizer
        )
    else:
        train_dataset = UbuntuDatasetForSP(
            file_path=os.path.join(args.data_dir, "train.txt"),
            max_seq_length=args.max_seq_length,
            tokenizer=tokenizer
        )
    eval_dataset = UbuntuDatasetForSP(
        file_path=os.path.join(args.data_dir, "valid.txt"),
        max_seq_length=args.max_seq_length,
        tokenizer=tokenizer
    )

    train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size,
                                                sampler=RandomSampler(train_dataset), num_workers=4)
    eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=args.eval_batch_size,
                                                sampler=SequentialSampler(eval_dataset), num_workers=4)

    model = BertForSequenceClassification(config=bert_config)
    model.to(device)

    num_train_steps = None
    if args.do_train:
        num_train_steps = int(
            len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
        # Prepare optimizer
        param_optimizer = list(model.named_parameters())
        # remove pooler, which is not used thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
            'weight_decay': args.weight_decay}, {
            'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay': 0.0}]

        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
        scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_steps)
    else:
        optimizer = None
        scheduler = None

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    best_metric = 0.0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss, _ = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()    # We have accumulated enought gradients
                    scheduler.step()
                    model.zero_grad()
                    global_step += 1

                if step % args.save_checkpoints_steps == 0:
                    model.eval()
                    f = open(os.path.join(args.output_dir, 'logits_dev.txt'), 'w')
                    eval_loss = 0
                    nb_eval_steps, nb_eval_examples = 0, 0
                    logits_all = []
                    for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
                        input_ids = input_ids.to(device)
                        input_mask = input_mask.to(device)
                        segment_ids = segment_ids.to(device)
                        label_ids = label_ids.to(device)

                        with torch.no_grad():
                            tmp_eval_loss, logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)

                        logits = logits.detach().cpu().numpy()
                        logits_all.append(logits)
                        label_ids = label_ids.cpu().numpy()

                        for logit, label in zip(logits, label_ids):
                            logit = '{},{}'.format(logit[0], logit[1])
                            f.write('_\t{}\t{}\n'.format(logit, label))

                        eval_loss += tmp_eval_loss.mean().item()

                        nb_eval_examples += input_ids.size(0)
                        nb_eval_steps += 1

                    f.close()
                    logits_all = np.concatenate(logits_all,axis=0)
                    eval_loss = eval_loss / nb_eval_steps

                    result = evaluate(os.path.join(args.output_dir, 'logits_dev.txt'))
                    result.update({'eval_loss': eval_loss})

                    output_eval_file = os.path.join(args.output_dir, "eval_results_dev.txt")
                    with open(output_eval_file, "a") as writer:
                        logger.info("***** Eval results *****")
                        for key in sorted(result.keys()):
                            logger.info("  %s = %s", key, str(result[key]))
                            writer.write("%s = %s\n" % (key, str(result[key])))

                    ### Save the best checkpoint
                    if best_metric < result['R10@1'] + result['R10@2']:
                        try:  ### Remove 'module' prefix when using DataParallel
                            state_dict = model.module.state_dict()
                        except AttributeError:
                            state_dict = model.state_dict()
                        torch.save(state_dict, os.path.join(args.output_dir, "model.pt"))
                        best_metric = result['R10@1'] + result['R10@2']
                        logger.info('Saving the best model in {}'.format(os.path.join(args.output_dir, "model.pt")))

                        ### visualize bad cases of the best model
                        # logger.info('Saving Bad cases...')
                        # visualize_bad_cases(
                        #     logits=logits_all,
                        #     input_file_path=os.path.join(args.data_dir, 'valid.txt'),
                        #     output_file_path=os.path.join(args.output_dir, 'valid_bad_cases.txt')
                        # )

                    model.train()
コード例 #14
0
class bert_classifier(object):
    def __init__(self):
        self.config = Config()
        self.device_setup()
        self.model_setup()

    def device_setup(self):
        """
        设备配置并加载BERT模型
        :return:
        """

        # 使用GPU,通过model.to(device)的方式使用
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

        model_save_path = self.config.get("result", "model_save_path")
        config_save_path = self.config.get("result", "config_save_path")
        vocab_save_path = self.config.get("result", "vocab_save_path")

        self.model_config = BertConfig.from_json_file(config_save_path)
        self.model = BertForSequenceClassification(self.model_config)
        self.state_dict = torch.load(model_save_path)
        self.model.load_state_dict(self.state_dict)
        self.tokenizer = transformers.BertTokenizer(vocab_save_path)
        self.model.to(self.device)
        self.model.eval()

    def model_setup(self):
        weight_decay = self.config.get("training_rule", "weight_decay")
        learning_rate = self.config.get("training_rule", "learning_rate")

        # 定义优化器和损失函数
        # Prepare optimizer and schedule (linear warmup and decay)
        no_decay = ['bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in self.model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            weight_decay
        }, {
            'params': [
                p for n, p in self.model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0
        }]
        self.optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate)
        self.criterion = nn.CrossEntropyLoss()

    def predict(self, sentence):
        input_ids, token_type_ids = convert_text_to_ids(
            self.tokenizer, sentence)
        input_ids = seq_padding(self.tokenizer, [input_ids])
        token_type_ids = seq_padding(self.tokenizer, [token_type_ids])
        # 需要 LongTensor
        input_ids, token_type_ids = input_ids.long(), token_type_ids.long()
        # 梯度清零
        self.optimizer.zero_grad()
        # 迁移到GPU
        input_ids, token_type_ids = input_ids.to(
            self.device), token_type_ids.to(self.device)
        output = self.model(input_ids=input_ids, token_type_ids=token_type_ids)
        y_pred_prob = output[0]
        y_pred_label = y_pred_prob.argmax(dim=1)
        print(y_pred_label)
コード例 #15
0
class init_class:
    def __init__(self):
        set_seed()
        self.sess = []

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer = BertTokenizer.from_pretrained('../user_data/vocab')

        for model_name in ['bert', 'rbtl']:
            model_config = BertConfig.from_pretrained(
                pretrained_model_name_or_path=
                "../user_data/bert_source/{}_config.json".format(model_name))
            model_config.vocab_size = len(
                pd.read_csv('../user_data/vocab', names=["score"]))

            self.model = BertForSequenceClassification(config=model_config)
            checkpoint = torch.load(
                '../user_data/save_model/{}_checkpoint.pth.tar'.format(
                    model_name),
                map_location='cpu')
            self.model.load_state_dict(checkpoint['status'])

            #pytorch转onnx
            MODEL_ONNX_PATH = "./torch_{}_dynamic.onnx".format(model_name)
            OPERATOR_EXPORT_TYPE = torch._C._onnx.OperatorExportTypes.ONNX
            self.model.eval()
            org_dummy_input = make_train_dummy_input()
            inf_dummy_input = make_inference_dummy_input()
            dynamic_axes = {
                'input_ids': [1],
                'token_type_ids': [1],
                'attention_mask': [1]
            }
            output = torch.onnx.export(
                self.model,
                org_dummy_input,
                MODEL_ONNX_PATH,
                verbose=False,
                operator_export_type=OPERATOR_EXPORT_TYPE,
                opset_version=10,
                input_names=['input_ids', 'token_type_ids', 'attention_mask'],
                output_names=['output'],
                dynamic_axes=dynamic_axes)

            self.sess.append(onnxruntime.InferenceSession(MODEL_ONNX_PATH))

    def __getitem__(self, text):
        inputs = self.tokenizer(text, return_tensors="pt")
        result = []
        for sess in self.sess:
            pred_onnx = sess.run(
                None, {
                    'input_ids': inputs['input_ids'].numpy(),
                    'token_type_ids': inputs['token_type_ids'].numpy(),
                    'attention_mask': inputs['attention_mask'].numpy()
                })

            pred_pob = torch.nn.functional.softmax(torch.tensor(pred_onnx[0]),
                                                   dim=1)[:, 1]

            result.append(pred_pob[0].cpu().item())
        return np.mean(result)
コード例 #16
0
def test_model(test_data_dir):
    """ Use trained models to get the final prediction """
    pretrained_models = ['bert-base-uncased', 'xlnet-base-cased', 'roberta-base']
    # load testing data into pandas DataFrame
    with open(test_data_dir) as f:
        test_lines = [line.rstrip('\n')[line.rstrip('\n').find(',') + 1:] for line in f]

    test_df = pd.DataFrame(test_lines, columns=['text'])
    # because the model input required some label we won't use this though
    test_df['label'] = 1

    for pretrained_model in pretrained_models:
        # load model
        if pretrained_model == 'bert-base-uncased':
            from transformers import BertForSequenceClassification as SequenceClassificationModel
            selected_epochs = bert_picks
        elif pretrained_model == 'xlnet-base-cased':
            from transformers import XLNetForSequenceClassification as SequenceClassificationModel
            selected_epochs = xlnet_picks
        elif pretrained_model == 'roberta-base':
            from transformers import RobertaForSequenceClassification as SequenceClassificationModel
            selected_epochs = roberta_picks

        config = AutoConfig.from_pretrained(pretrained_model)
        model = SequenceClassificationModel(config)

        # load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
        init_token_idx = tokenizer.cls_token_id
        eos_token_idx = tokenizer.sep_token_id
        pad_token_idx = tokenizer.pad_token_id
        unk_token_idx = tokenizer.unk_token_id

        max_input_length = tokenizer.max_model_input_sizes[pretrained_model]

        def tokenize_and_cut(sentence):
            """ Tokenize the sentence and cut it if it's too long """
            tokens = tokenizer.tokenize(sentence)
            # - 2 is for cls and sep tokens
            tokens = tokens[:max_input_length - 2]
            return tokens

        # xlnet model has no max_model_input_sizes field but it acutally has a limit
        # so we manually set it
        if max_input_length == None:
            max_input_length = 512

        # Field handles the conversion to Tensor (tokenizing)
        TEXT = data.Field(
            batch_first=True,
            use_vocab=False,
            tokenize=tokenize_and_cut,
            preprocessing=tokenizer.convert_tokens_to_ids,
            init_token=init_token_idx,
            eos_token=eos_token_idx,
            pad_token=pad_token_idx,
            unk_token=unk_token_idx
        )

        LABEL = data.LabelField(dtype=torch.long, use_vocab=False)

        # transform DataFrame into torchtext Dataset
        print('Transforming testing data for', pretrained_model, 'model')
        test_data = DataFrameDataset.splits(text_field=TEXT, label_field=LABEL, test_df=test_df)

        BATCH_SIZE = 32
        # get gpu if possible
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        test_iterator = data.Iterator(test_data, batch_size=BATCH_SIZE, device=device, shuffle=False, sort=False, train=False)

        for selected_epoch in selected_epochs:
            # load trained model
            model.load_state_dict(
                torch.load(os.path.join(
                    'models',
                    f'{pretrained_model}-e{selected_epoch:02}-model.pt'
                ), map_location=device)
            )
            model = model.eval()

            # get predictions of test data
            print(f'Testing for {pretrained_model} epoch {selected_epoch}')
            predictions = test(model, test_iterator)

            # map predictions to match the original
            label_map = {0: -1, 1: 1}
            corrected_predictions = list(map(lambda x: label_map[x], predictions))

            # load data into dataframe
            submission = pd.read_csv('predictions_test/sample_submission.csv')
            submission.Prediction = corrected_predictions
            submission.to_csv(os.path.join('predictions_test', f'{pretrained_model}-e{selected_epoch:02}.csv'), index=False)

    test_predictions('predictions_test')
コード例 #17
0
def test_model(settings: Settings, device: torch.device,
               model: BertForSequenceClassification,
               evaluation_dataloader: DataLoader, dataset_type: str):
    # Test model on the given input dataset.
    # We can also (???) examine the BERT feature values for sentences which are
    # associated with hatespeech, versus sentences which are not associated
    # with hatespeech.
    settings.write_debug('Starting evaluation: {0} data'.format(dataset_type))
    t0 = time.time()

    # Put the model in evaluation mode--the dropout layers behave differently
    # during evaluation.
    model.eval()

    # Tracking variables
    eval_loss, eval_accuracy, eval_f1 = 0, 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0

    # Evaluate data for one epoch
    for batch in evaluation_dataloader:
        # Add batch to GPU
        batch = tuple(t.to(device) for t in batch)

        # Unpack the inputs from our dataloader
        b_input_ids, b_input_mask, b_labels = batch

        # Telling the model not to compute or store gradients, saving memory and
        # speeding up validation
        with torch.no_grad():
            # Forward pass, calculate logit predictions.
            # This will return the logits rather than the loss because we have
            # not provided labels.
            # token_type_ids is the same as the "segment ids", which
            # differentiates sentence 1 and 2 in 2-sentence tasks.
            # The documentation for this `model` function is here:
            # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification
            outputs = model(b_input_ids,
                            token_type_ids=None,
                            attention_mask=b_input_mask)

        # Get the "logits" output by the model. The "logits" are the output
        # values prior to applying an activation function like the softmax.
        logits = outputs[0]

        # Move logits and labels to CPU
        logits = logits.detach().cpu().numpy()
        label_ids = b_labels.to('cpu').numpy()

        # Calculate the accuracy for this batch of test sentences.
        tmp_eval_accuracy = flat_accuracy(logits, label_ids)
        tmp_f1 = flat_f1(settings, logits, label_ids)

        # Accumulate the total accuracy.
        eval_accuracy += tmp_eval_accuracy
        eval_f1 += tmp_f1

        # Track the number of batches
        nb_eval_steps += 1

    settings.write_debug("  Accuracy: {0:.2f}".format(eval_accuracy /
                                                      nb_eval_steps))
    settings.write_debug("  F1: {0:.2f}".format(eval_f1 / nb_eval_steps))
    settings.write_debug("  Validation took: {:}".format(
        format_time(time.time() - t0)))
    settings.write_debug('Finished evaluation: {0} data'.format(dataset_type))
コード例 #18
0
ファイル: bert.py プロジェクト: ghajduk3/COLI
def train_classifier(model: BertForSequenceClassification,
                     dataset: TensorDataset, validation_ratio: float,
                     batch_size: int, freeze_embeddings_layer: bool,
                     freeze_encoder_layers: int,
                     epochs: int) -> (BertForSequenceClassification, list):

    device = select_device()

    train_size = int(validation_ratio * len(dataset))
    val_size = len(dataset) - train_size

    train_dataset, val_dataset = random_split(dataset, [train_size, val_size])

    train_dataloader = DataLoader(train_dataset,
                                  sampler=RandomSampler(train_dataset),
                                  batch_size=batch_size)

    validation_dataloader = DataLoader(val_dataset,
                                       sampler=SequentialSampler(val_dataset),
                                       batch_size=batch_size)

    modules = []

    if freeze_embeddings_layer:
        modules.append(model.bert.embeddings)

    for i in range(freeze_encoder_layers):
        modules.append(model.bert.encoder.layer[i])

    for module in modules:
        for param in module.parameters():
            param.requires_grad = False

    model.to(device)

    optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()),
                      lr=5e-5)

    total_steps = len(train_dataloader) * epochs

    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=0,
                                                num_training_steps=total_steps)

    training_stats = []

    total_t0 = time.time()

    for epoch_i in range(0, epochs):

        print("")
        print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
        print('Training...')

        t0 = time.time()

        total_train_loss = 0

        model.train()

        for step, batch in enumerate(train_dataloader):

            if step % 40 == 0 and not step == 0:
                elapsed = format_time(time.time() - t0)
                print('  Batch {:>5,}  of  {:>5,}.    Elapsed: {:}.'.format(
                    step, len(train_dataloader), elapsed))

            b_input_ids = batch[0].to(device)
            b_input_mask = batch[1].to(device)
            b_labels = batch[2].to(device)

            model.zero_grad()

            outputs = model(b_input_ids,
                            token_type_ids=None,
                            attention_mask=b_input_mask,
                            labels=b_labels)

            loss = outputs.loss
            logits = outputs.logits

            total_train_loss += loss.item()

            loss.backward()

            # Clip the norm of the gradients to 1.0.
            # This is to help prevent the "exploding gradients" problem.
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

            optimizer.step()

            scheduler.step()

        avg_train_loss = total_train_loss / len(train_dataloader)

        training_time = format_time(time.time() - t0)

        print("")
        print("  Average training loss: {0:.2f}".format(avg_train_loss))
        print("  Training epcoh took: {:}".format(training_time))

        print("")
        print("Running Validation...")

        t0 = time.time()

        model.eval()

        total_eval_accuracy = 0
        total_eval_loss = 0
        nb_eval_steps = 0

        for batch in validation_dataloader:

            b_input_ids = batch[0].to(device)
            b_input_mask = batch[1].to(device)
            b_labels = batch[2].to(device)

            with torch.no_grad():

                outputs = model(b_input_ids,
                                token_type_ids=None,
                                attention_mask=b_input_mask,
                                labels=b_labels)

                loss = outputs.loss
                logits = outputs.logits

            total_eval_loss += loss.item()

            logits = logits.detach().cpu().numpy()
            label_ids = b_labels.cpu().numpy()

            total_eval_accuracy += flat_accuracy(logits, label_ids)

        avg_val_accuracy = total_eval_accuracy / len(validation_dataloader)
        print("  Accuracy: {0:.2f}".format(avg_val_accuracy))

        avg_val_loss = total_eval_loss / len(validation_dataloader)

        validation_time = format_time(time.time() - t0)

        print("  Validation Loss: {0:.2f}".format(avg_val_loss))
        print("  Validation took: {:}".format(validation_time))

        training_stats.append({
            'epoch': epoch_i + 1,
            'Training Loss': avg_train_loss,
            'Valid. Loss': avg_val_loss,
            'Valid. Accur.': avg_val_accuracy,
            'Training Time': training_time,
            'Validation Time': validation_time
        })

    print("")
    print("Training complete!")

    print("Total training took {:} (h:mm:ss)".format(
        format_time(time.time() - total_t0)))

    return model, training_stats
コード例 #19
0
class AdapterCompositionTest(unittest.TestCase):
    def setUp(self):
        self.model = BertForSequenceClassification(BertConfig())
        self.model.add_adapter("a")
        self.model.add_adapter("b")
        self.model.add_adapter("c")
        self.model.add_adapter("d")
        self.model.to(torch_device)
        self.model.train()

    def training_pass(self):
        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        inputs["labels"] = torch.ones(1, dtype=torch.long)
        loss = self.model(**inputs).loss
        loss.backward()

    def batched_training_pass(self):
        inputs = {"input_ids": ids_tensor((4, 128), 1000), "labels": torch.ones(4, dtype=torch.long)}
        loss = self.model(**inputs).loss
        loss.backward()

    def test_simple_split(self):
        # pass over split setup
        self.model.set_active_adapters(Split("a", "b", 64))

        self.training_pass()

    def test_stacked_split(self):
        # split into two stacks
        self.model.set_active_adapters(Split(Stack("a", "b"), Stack("c", "d"), split_index=64))

        self.training_pass()

    def test_stacked_fusion(self):
        self.model.add_adapter_fusion(Fuse("b", "d"))

        # fuse two stacks
        self.model.set_active_adapters(Fuse(Stack("a", "b"), Stack("c", "d")))

        self.training_pass()

    def test_mixed_stack(self):
        self.model.add_adapter_fusion(Fuse("a", "b"))

        self.model.set_active_adapters(Stack("a", Split("c", "d", split_index=64), Fuse("a", "b")))

        self.training_pass()

    def test_nested_split(self):
        # split into two stacks
        self.model.set_active_adapters(Split(Split("a", "b", split_index=32), "c", split_index=64))

        self.training_pass()

    def test_parallel(self):
        self.model.set_active_adapters(Parallel("a", "b", "c", "d"))

        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        logits = self.model(**inputs).logits
        self.assertEqual(logits.shape, (4, 2))

    def test_nested_parallel(self):
        self.model.set_active_adapters(Stack("a", Parallel(Stack("b", "c"), "d")))

        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        logits = self.model(**inputs).logits
        self.assertEqual(logits.shape, (2, 2))

    def test_batch_split(self):
        self.model.set_active_adapters(BatchSplit("a", "b", "c", batch_sizes=[1, 1, 2]))
        self.batched_training_pass()

    def test_batch_split_int(self):
        self.model.set_active_adapters(BatchSplit("a", "b", batch_sizes=2))
        self.batched_training_pass()

    def test_nested_batch_split(self):
        self.model.set_active_adapters(Stack("a", BatchSplit("b", "c", batch_sizes=[2, 2])))
        self.batched_training_pass()

    def test_batch_split_invalid(self):
        self.model.set_active_adapters(BatchSplit("a", "b", batch_sizes=[3, 4]))
        with self.assertRaises(IndexError):
            self.batched_training_pass()

    def test_batch_split_equivalent(self):
        self.model.set_active_adapters("a")
        self.model.eval()
        input_ids = ids_tensor((2, 128), 1000)
        output_a = self.model(input_ids[:1])

        self.model.set_active_adapters("b")
        output_b = self.model(input_ids[1:2])

        self.model.set_active_adapters(BatchSplit("a", "b", batch_sizes=[1, 1]))
        output = self.model(input_ids)

        self.assertTrue(torch.allclose(output_a[0], output[0][0], atol=1e-6))
        self.assertTrue(torch.allclose(output_b[0], output[0][1], atol=1e-6))
コード例 #20
0
from soynlp.normalizer import repeat_normalize

finetune_ckpt = './your_local_path/BaekBERT.ckpt'
test_path = '../data/testset/inferset.csv'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
args = Arg()

ckp = torch.load(finetune_ckpt, map_location=torch.device('cpu'))
pretrained_model_config = BertConfig.from_pretrained(
    args.pretrained_model,
    num_labels=ckp['state_dict']['bert.classifier.bias'].shape.numel(),
)
model = BertForSequenceClassification(pretrained_model_config)
model.load_state_dict({k[5:]: v for k, v in ckp['state_dict'].items()})
model.to(device)
model.eval()


def read_data(path):
    if path.endswith('xlsx'):
        return pd.read_excel(path)
    elif path.endswith('csv'):
        return pd.read_csv(path)
    elif path.endswith('tsv') or path.endswith('txt'):
        return pd.read_csv(path, sep='\t')
    else:
        raise NotImplementedError(
            'Only Excel(xlsx)/Csv/Tsv(txt) are Supported')


def preprocess_dataframe(df):
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default='/hdd/lujunyu/dataset/multi_turn_corpus/ubuntu/',
        type=str,
        required=False,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--task_name",
                        default='ubuntu',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default='/hdd/lujunyu/model/chatbert/ubuntu_base_si/',
        type=str,
        required=False,
        help="The output directory where the model checkpoints will be written."
    )
    parser.add_argument(
        "--init_checkpoint",
        default='/hdd/lujunyu/model/chatbert/ubuntu_base_si_aug/model.pt',
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")

    ## Other parameters
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")

    parser.add_argument("--eval_batch_size",
                        default=2000,
                        type=int,
                        help="Total batch size for eval.")

    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    bert_config = BertConfig.from_pretrained('bert-base-uncased')
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',
                                              do_lower_case=args.do_lower_case)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}"
            .format(args.max_seq_length, bert_config.max_position_embeddings))

    test_dataset = UbuntuDataset(file_path=os.path.join(
        args.data_dir, "test.txt"),
                                 max_seq_length=args.max_seq_length,
                                 tokenizer=tokenizer)
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=args.eval_batch_size,
        sampler=SequentialSampler(test_dataset),
        num_workers=4)

    model = BertForSequenceClassification(bert_config).from_pretrained(
        args.init_checkpoint, config=bert_config)
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    logger.info("***** Running testing *****")
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    f = open(os.path.join(args.output_dir, 'logits_test.txt'), 'w')

    model.eval()
    test_loss = 0
    nb_test_steps, nb_test_examples = 0, 0
    for input_ids, input_mask, segment_ids, label_ids in tqdm(test_dataloader,
                                                              desc="Step"):
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)

        with torch.no_grad():
            tmp_test_loss, logits = model(input_ids,
                                          token_type_ids=segment_ids,
                                          attention_mask=input_mask,
                                          labels=label_ids)

        logits = logits.detach().cpu().numpy()
        label_ids = label_ids.to('cpu').numpy()

        for logit, label in zip(logits, label_ids):
            logit = '{},{}'.format(logit[0], logit[1])
            f.write('_\t{}\t{}\n'.format(logit, label))

        test_loss += tmp_test_loss.mean().item()

        nb_test_examples += input_ids.size(0)
        nb_test_steps += 1

    f.close()
    test_loss = test_loss / nb_test_steps
    result = evaluate(os.path.join(args.output_dir, 'logits_test.txt'))
    result.update({'test_loss': test_loss})

    output_eval_file = os.path.join(args.output_dir, "results_test.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Test results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))