def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() feature_extractor = self.get_feature_extractor() processor_slow = CLIPProcessor(tokenizer=tokenizer_slow, feature_extractor=feature_extractor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = CLIPProcessor(tokenizer=tokenizer_fast, feature_extractor=feature_extractor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer) self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast) self.assertEqual(processor_slow.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertEqual(processor_fast.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor_slow.feature_extractor, CLIPFeatureExtractor) self.assertIsInstance(processor_fast.feature_extractor, CLIPFeatureExtractor)
def test_save_load_pretrained_additional_features(self): processor = CLIPProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor( do_normalize=False, padding_value=1.0) processor = CLIPProcessor.from_pretrained(self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, CLIPFeatureExtractor)
def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor)
def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) image_input = self.prepare_image_inputs() input_feat_extract = feature_extractor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, CLIPTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, CLIPFeatureExtractor)
def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor()