コード例 #1
0
    def test_save_load_pretrained_default(self):
        tokenizer_slow = self.get_tokenizer()
        tokenizer_fast = self.get_rust_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor_slow = CLIPProcessor(tokenizer=tokenizer_slow,
                                       feature_extractor=feature_extractor)
        processor_slow.save_pretrained(self.tmpdirname)
        processor_slow = CLIPProcessor.from_pretrained(self.tmpdirname,
                                                       use_fast=False)

        processor_fast = CLIPProcessor(tokenizer=tokenizer_fast,
                                       feature_extractor=feature_extractor)
        processor_fast.save_pretrained(self.tmpdirname)
        processor_fast = CLIPProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor_slow.tokenizer.get_vocab(),
                         tokenizer_slow.get_vocab())
        self.assertEqual(processor_fast.tokenizer.get_vocab(),
                         tokenizer_fast.get_vocab())
        self.assertEqual(tokenizer_slow.get_vocab(),
                         tokenizer_fast.get_vocab())
        self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
        self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)

        self.assertEqual(processor_slow.feature_extractor.to_json_string(),
                         feature_extractor.to_json_string())
        self.assertEqual(processor_fast.feature_extractor.to_json_string(),
                         feature_extractor.to_json_string())
        self.assertIsInstance(processor_slow.feature_extractor,
                              CLIPFeatureExtractor)
        self.assertIsInstance(processor_fast.feature_extractor,
                              CLIPFeatureExtractor)
コード例 #2
0
    def test_save_load_pretrained_additional_features(self):
        processor = CLIPProcessor(
            tokenizer=self.get_tokenizer(),
            feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)",
                                                  eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(
            do_normalize=False, padding_value=1.0)

        processor = CLIPProcessor.from_pretrained(self.tmpdirname,
                                                  bos_token="(BOS)",
                                                  eos_token="(EOS)",
                                                  do_normalize=False,
                                                  padding_value=1.0)

        self.assertEqual(processor.tokenizer.get_vocab(),
                         tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)

        self.assertEqual(processor.feature_extractor.to_json_string(),
                         feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor,
                              CLIPFeatureExtractor)
コード例 #3
0
    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)
コード例 #4
0
    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = feature_extractor(image_input, return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
コード例 #5
0
    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = CLIPProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer, CLIPTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, CLIPFeatureExtractor)
コード例 #6
0
    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])
コード例 #7
0
    def test_processor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = CLIPProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()