def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = UniSpeechSatModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i]:] = 0.0 attention_mask[i, input_lengths[i]:] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i:i + 1, :input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i:i + 1, :output.shape[1]] self.parent.assertTrue( torch.allclose(output, batch_output, atol=1e-3))
def create_and_check_model(self, config, input_values, attention_mask): model = UniSpeechSatModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size))