コード例 #1
0
    def create_and_check_batch_inference(self, config, input_values, *args):
        # test does not pass for models making use of `group_norm`
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = UniSpeechSatModel(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape,
                                    device=torch_device,
                                    dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i]:] = 0.0
            attention_mask[i, input_lengths[i]:] = 0.0

        batch_outputs = model(input_values,
                              attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i:i + 1, :input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i:i + 1, :output.shape[1]]
            self.parent.assertTrue(
                torch.allclose(output, batch_output, atol=1e-3))
コード例 #2
0
 def create_and_check_model(self, config, input_values, attention_mask):
     model = UniSpeechSatModel(config=config)
     model.to(torch_device)
     model.eval()
     result = model(input_values, attention_mask=attention_mask)
     self.parent.assertEqual(
         result.last_hidden_state.shape,
         (self.batch_size, self.output_seq_length, self.hidden_size))