def create_and_check_model(self, config, pixel_values, labels): model = ViTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model(self, config, pixel_values, labels): model = ViTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = to_2tuple(self.image_size) patch_size = to_2tuple(self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
def test_encoder_decoder_save_load_from_encoder_decoder_from_pt(self): config = self.get_encoder_decoder_config_small() # create two random ViT/GPT2 models for vit-gpt2 & initialize weights (+cross_attention weights) encoder_pt = ViTModel(config.encoder).to(torch_device).eval() decoder_pt = GPT2LMHeadModel(config.decoder).to(torch_device).eval() encoder_decoder_pt = VisionEncoderDecoderModel(encoder=encoder_pt, decoder=decoder_pt).to(torch_device).eval() pixel_values = floats_tensor( [ 13, encoder_pt.config.num_channels, encoder_pt.config.image_size, encoder_pt.config.image_size, ] ) decoder_input_ids = ids_tensor([13, 1], decoder_pt.config.vocab_size) pt_pixel_values = torch.tensor(pixel_values.numpy(), device=torch_device, dtype=torch.float) pt_decoder_input_ids = torch.tensor(decoder_input_ids.numpy(), device=torch_device, dtype=torch.long) logits_pt = encoder_decoder_pt(pixel_values=pt_pixel_values, decoder_input_ids=pt_decoder_input_ids).logits # PyTorch => TensorFlow with tempfile.TemporaryDirectory() as tmp_dirname_1, tempfile.TemporaryDirectory() as tmp_dirname_2: encoder_decoder_pt.encoder.save_pretrained(tmp_dirname_1) encoder_decoder_pt.decoder.save_pretrained(tmp_dirname_2) encoder_decoder_tf = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( tmp_dirname_1, tmp_dirname_2, encoder_from_pt=True, decoder_from_pt=True ) logits_tf = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits max_diff = np.max(np.abs(logits_pt.detach().cpu().numpy() - logits_tf.numpy())) self.assertAlmostEqual(max_diff, 0.0, places=3) # Make sure `from_pretrained` following `save_pretrained` work and give the same result # (See https://github.com/huggingface/transformers/pull/14016) with tempfile.TemporaryDirectory() as tmp_dirname: encoder_decoder_tf.save_pretrained(tmp_dirname) encoder_decoder_tf = TFVisionEncoderDecoderModel.from_pretrained(tmp_dirname) logits_tf_2 = encoder_decoder_tf(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids).logits max_diff = np.max(np.abs(logits_tf_2.numpy() - logits_tf.numpy())) self.assertAlmostEqual(max_diff, 0.0, places=3)
def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT configuration config = ViTConfig() base_model = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": base_model = True config.patch_size = int(vit_name[-12:-10]) config.image_size = int(vit_name[-9:-6]) else: config.num_labels = 1000 repo_id = "datasets/huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load( open(cached_download(hf_hub_url(repo_id, filename)), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.patch_size = int(vit_name[-6:-4]) config.image_size = int(vit_name[-3:]) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny"): config.hidden_size = 192 config.intermediate_size = 768 config.num_hidden_layers = 12 config.num_attention_heads = 3 elif vit_name[9:].startswith("small"): config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 else: pass else: if vit_name[4:].startswith("small"): config.hidden_size = 768 config.intermediate_size = 2304 config.num_hidden_layers = 8 config.num_attention_heads = 8 elif vit_name[4:].startswith("base"): pass elif vit_name[4:].startswith("large"): config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 elif vit_name[4:].startswith("huge"): config.hidden_size = 1280 config.intermediate_size = 5120 config.num_hidden_layers = 32 config.num_attention_heads = 16 # load original model from timm timm_model = timm.create_model(vit_name, pretrained=True) timm_model.eval() # load state_dict of original model, remove and rename some keys state_dict = timm_model.state_dict() if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) # load HuggingFace model if vit_name[-5:] == "in21k": model = ViTModel(config).eval() else: model = ViTForImageClassification(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by ViTFeatureExtractor/DeiTFeatureExtractor if "deit" in vit_name: feature_extractor = DeiTFeatureExtractor(size=config.image_size) else: feature_extractor = ViTFeatureExtractor(size=config.image_size) encoding = feature_extractor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) if base_model: timm_pooled_output = timm_model.forward_features(pixel_values) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(timm_pooled_output, outputs.pooler_output, atol=1e-3) else: timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving feature extractor to {pytorch_dump_folder_path}") feature_extractor.save_pretrained(pytorch_dump_folder_path)
def get_vision_text_model(self, vision_config, text_config): vision_model = ViTModel(vision_config).eval() text_model = BertModel(text_config).eval() return vision_model, text_model
def __init__( self, height: int, width: int, num_channels: int = 3, use_pretrained: bool = True, pretrained_model: str = "google/vit-base-patch16-224", saved_weights_in_checkpoint: bool = False, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, gradient_checkpointing: bool = False, patch_size: int = 16, trainable: bool = True, output_attentions: bool = False, **kwargs, ): """Creates a ViT encoder using transformers.ViTModel. use_pretrained: If True, uses a pretrained transformer based on the pretrained_model argument. pretrained: If str, expects the path to a pretrained model or the id of a model on huggingface.co, and ignores the configuration provided in the arguments. """ super().__init__() try: from transformers import ViTConfig, ViTModel except ModuleNotFoundError: raise RuntimeError( " transformers is not installed. " "In order to install all image feature dependencies run " "pip install ludwig[image]") # map parameter input feature config names to internal names img_height = height img_width = width in_channels = num_channels img_width = img_width or img_height if img_width != img_height: raise ValueError("img_height and img_width should be identical.") self._input_shape = (in_channels, img_height, img_width) if use_pretrained and not saved_weights_in_checkpoint: self.transformer = ViTModel.from_pretrained(pretrained_model) else: config = ViTConfig( image_size=img_height, num_channels=in_channels, patch_size=patch_size, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, hidden_act=hidden_act, hidden_dropout_prob=hidden_dropout_prob, attention_probs_dropout_prob=attention_probs_dropout_prob, initializer_range=initializer_range, layer_norm_eps=layer_norm_eps, gradient_checkpointing=gradient_checkpointing, ) self.transformer = ViTModel(config) if trainable: self.transformer.train() else: freeze_parameters(self.transformer) self._output_shape = (self.transformer.config.hidden_size, ) self.output_attentions = output_attentions
def get_encoder_decoder_model(self, config, decoder_config): encoder_model = ViTModel(config).eval() decoder_model = TrOCRForCausalLM(decoder_config).eval() return encoder_model, decoder_model
def get_encoder_decoder_model(self, config, decoder_config): encoder_model = ViTModel(config).eval() decoder_model = BertLMHeadModel(decoder_config).eval() return encoder_model, decoder_model
def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT configuration config = ViTConfig() # patch_size if model_name[-1] == "8": config.patch_size = 8 # set labels if required if not base_model: config.num_labels = 1000 repo_id = "datasets/huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 # load original model from torch hub original_model = torch.hub.load("facebookresearch/dino:main", model_name) original_model.eval() # load state_dict of original model, remove and rename some keys state_dict = original_model.state_dict() if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model=base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) # load HuggingFace model if base_model: model = ViTModel(config, add_pooling_layer=False).eval() else: model = ViTForImageClassification(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by ViTFeatureExtractor feature_extractor = ViTFeatureExtractor() encoding = feature_extractor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) if base_model: final_hidden_state_cls_token = original_model(pixel_values) assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1) else: logits = original_model(pixel_values) assert logits.shape == outputs.logits.shape assert torch.allclose(logits, outputs.logits, atol=1e-3) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving feature extractor to {pytorch_dump_folder_path}") feature_extractor.save_pretrained(pytorch_dump_folder_path)
def convert_tr_ocr_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our VisionEncoderDecoderModel structure. """ # define encoder and decoder configs based on checkpoint_url encoder_config = ViTConfig(image_size=384, qkv_bias=False) decoder_config = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: decoder_config.encoder_hidden_size = 768 elif "large" in checkpoint_url: # use ViT-large encoder encoder_config.hidden_size = 1024 encoder_config.intermediate_size = 4096 encoder_config.num_hidden_layers = 24 encoder_config.num_attention_heads = 16 decoder_config.encoder_hidden_size = 1024 else: raise ValueError( "Should either find 'base' or 'large' in checkpoint URL") # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: decoder_config.tie_word_embeddings = False decoder_config.activation_function = "relu" decoder_config.max_position_embeddings = 1024 decoder_config.scale_embedding = True decoder_config.use_learned_position_embeddings = False decoder_config.layernorm_embedding = False # load HuggingFace model encoder = ViTModel(encoder_config, add_pooling_layer=False) decoder = TrOCRForCausalLM(decoder_config) model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder) model.eval() # load state_dict of original model, rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)["model"] rename_keys = create_rename_keys(encoder_config, decoder_config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, encoder_config) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("decoder") and "output_projection" not in key: state_dict["decoder.model." + key] = val else: state_dict[key] = val # load state dict model.load_state_dict(state_dict) # Check outputs on an image feature_extractor = ViTFeatureExtractor(size=encoder_config.image_size) tokenizer = RobertaTokenizer.from_pretrained("roberta-large") processor = TrOCRProcessor(feature_extractor, tokenizer) pixel_values = processor(images=prepare_img(checkpoint_url), return_tensors="pt").pixel_values # verify logits decoder_input_ids = torch.tensor( [[model.config.decoder.decoder_start_token_id]]) outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) logits = outputs.logits expected_shape = torch.Size([1, 1, 50265]) if "trocr-base-handwritten" in checkpoint_url: expected_slice = torch.tensor([ -1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311 ]) elif "trocr-large-handwritten" in checkpoint_url: expected_slice = torch.tensor([ -2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170 ]) elif "trocr-base-printed" in checkpoint_url: expected_slice = torch.tensor([ -5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210 ]) elif "trocr-large-printed" in checkpoint_url: expected_slice = torch.tensor([ -6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535 ]) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose( logits[0, 0, :10], expected_slice, atol=1e-3), "First elements of logits not as expected" Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path)