def create_and_check_xlm_sequence_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask): model = XLMForSequenceClassification(config) model.eval() (logits, ) = model(input_ids) loss, logits = model(input_ids, labels=sequence_labels) result = { "loss": loss, "logits": logits, } self.parent.assertListEqual(list(result["loss"].size()), []) self.parent.assertListEqual( list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size])
def create_and_check_xlm_sequence_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids) result = model(input_ids, labels=sequence_labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
elif args.BertModel == 'Bert': from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-cased', do_lower_case=False) model = BertForSequenceClassification.from_pretrained('bert-base-cased', num_labels=NUM_LABELS, output_attentions=False, output_hidden_states=False) print(' ') print('using Bert:') elif args.BertModel == 'XLM': from transformers import XLMTokenizer, XLMForSequenceClassification, XLMConfig tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-enfr-1024', do_lower_case=True) model = XLMForSequenceClassification.from_pretrained('xlm-mlm-enfr-1024', num_labels=NUM_LABELS, output_attentions=False, output_hidden_states=False, ) print(' ') print('using XLM:') elif args.BertModel == 'gpt2': from transformers import GPT2Tokenizer, GPT2PreTrainedModel, GPT2DoubleHeadsModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2', do_lower_case=True) tokenizer.cls_token = tokenizer.cls_token_id tokenizer.pad_token = tokenizer.eos_token from gpt2 import GPT2_multiclass_clf model = GPT2_multiclass_clf.from_pretrained('gpt2', num_labels=NUM_LABELS, output_attentions=False,
def load_model(args): if 'bert-base-multilingual' in args['model_checkpoint']: # bert-base-multilingual-uncased or bert-base-multilingual-cased # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = BertTokenizer.from_pretrained(args['model_checkpoint']) config = BertConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'token_classification' == args['task']: model = BertForWordClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'xlm-mlm' in args['model_checkpoint']: # xlm-mlm-100-1280 # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = XLMTokenizer.from_pretrained(args['model_checkpoint']) config = XLMConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = XLMForSequenceClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'token_classification' == args['task']: model = XLMForWordClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'multi_label_classification' == args['task']: model = XLMForMultiLabelClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'xlm-roberta' in args['model_checkpoint']: # xlm-roberta-base or xlm-roberta-large # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = XLMRobertaTokenizer.from_pretrained( args['model_checkpoint']) config = XLMRobertaConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = XLMRobertaForSequenceClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'token_classification' == args['task']: model = XLMRobertaForWordClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'multi_label_classification' == args['task']: model = XLMRobertaForMultiLabelClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'fasttext' in args['model_checkpoint']: # Prepare config & tokenizer vocab_path = args['vocab_path'] config_path = None word_tokenizer = args['word_tokenizer_class']() emb_path = args['embedding_path'][args['model_checkpoint']] _, vocab_map = load_vocab(vocab_path) tokenizer = SimpleTokenizer(vocab_map, word_tokenizer, lower=args["lower"]) vocab_list = list(tokenizer.vocab.keys()) config = BertConfig.from_pretrained('bert-base-uncased') if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] config.num_hidden_layers = args["num_layers"] embeddings = gen_embeddings(vocab_list, emb_path, emb_dim=300) config.hidden_size = 300 config.num_attention_heads = 10 config.vocab_size = len(embeddings) # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) model.bert.embeddings.word_embeddings.weight.data.copy_( torch.FloatTensor(embeddings)) elif 'token_classification' == args['task']: model = BertForWordClassification(config) model.bert.embeddings.word_embeddings.weight.data.copy_( torch.FloatTensor(embeddings)) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) model.bert.embeddings.word_embeddings.weight.data.copy_( torch.FloatTensor(embeddings)) elif 'scratch' in args['model_checkpoint']: vocab_path, config_path = None, None tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") config = BertConfig.from_pretrained("bert-base-uncased") if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] config.num_hidden_layers = args["num_layers"] config.hidden_size = 300 config.num_attention_heads = 10 if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config=config) elif 'token_classification' == args['task']: model = BertForWordClassification(config=config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config=config) elif 'indobenchmark' in args['model_checkpoint']: # indobenchmark models # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = BertTokenizer.from_pretrained(args['model_checkpoint']) config = BertConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model model_class = None if 'sequence_classification' == args['task']: model_class = AlbertForSequenceClassification if 'lite' in args[ 'model_checkpoint'] else BertForSequenceClassification elif 'token_classification' == args['task']: model_class = AlbertForWordClassification if 'lite' in args[ 'model_checkpoint'] else BertForWordClassification elif 'multi_label_classification' == args['task']: model_class = AlbertForMultiLabelClassification if 'lite' in args[ 'model_checkpoint'] else BertForMultiLabelClassification model = model_class.from_pretrained(args['model_checkpoint'], config=config) return model, tokenizer, vocab_path, config_path
def load_model(args): if 'albert-large-wwmlm-512' == args['model_checkpoint']: vocab_path = "../embeddings/albert-large-wwmlm-512/albert_large_model_bpe_wwmlm_512_vocab_uncased_30000.txt" tokenizer = BertTokenizer(vocab_path) config = AlbertConfig.from_json_file( "../embeddings/albert-large-wwmlm-512/albert_large_model_bpe_wwmlm_512_albert_large_config.json" ) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = AlbertForSequenceClassification(config) elif 'token_classification' == args['task']: model = AlbertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = AlbertForMultiLabelClassification(config) # Plug pretrained bert model albert_model = AlbertModel.from_pretrained( "../embeddings/albert-large-wwmlm-512/albert_large_model_bpe_wwmlm_512_pytorch_albert_large_512_629k.bin", from_tf=False, config=config) model.albert = albert_model elif 'albert-base-wwmlm-512' == args['model_checkpoint']: vocab_path = "../embeddings/albert-base-wwmlm-512/albert_base_model_bpe_wwmlm_512_vocab_uncased_30000.txt" config_path = "../embeddings/albert-base-wwmlm-512/albert_base_model_bpe_wwmlm_512_albert_base_config.json" tokenizer = BertTokenizer(vocab_path) config = AlbertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = AlbertForSequenceClassification(config) elif 'token_classification' == args['task']: model = AlbertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = AlbertForMultiLabelClassification(config) # Plug pretrained bert model albert_model = AlbertModel.from_pretrained( "../embeddings/albert-base-wwmlm-512/albert_base_model_bpe_wwmlm_512_pytorch_model_albert_base_162k.bin", from_tf=False, config=config) model.albert = albert_model elif 'albert-large-wwmlm-128' == args['model_checkpoint']: vocab_path = "../embeddings/albert-large-wwmlm-128/albert_large_model_bpe_wwmlm_128_vocab_uncased_30000.txt" config_path = "../embeddings/albert-large-wwmlm-128/albert_large_model_bpe_wwmlm_128_albert_large_config.json" tokenizer = BertTokenizer(vocab_path) config = AlbertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = AlbertForSequenceClassification(config) elif 'token_classification' == args['task']: model = AlbertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = AlbertForMultiLabelClassification(config) # Plug pretrained bert model albert_model = AlbertModel.from_pretrained( "../embeddings/albert-large-wwmlm-128/albert_large_model_bpe_wwmlm_128_pytorch_albert_large_128_500k.bin", from_tf=False, config=config) model.albert = albert_model elif 'babert-bpe-mlm-large-512' == args['model_checkpoint']: # babert_bpe # Prepare config & tokenizer vocab_path = "../embeddings/babert-bpe-mlm-large-512/babert_model_bpe_mlm_uncased_large_512_dup10-5_vocab_uncased_30522.txt" config_path = "../embeddings/babert-bpe-mlm-large-512/babert_model_bpe_mlm_uncased_large_512_dup10-5_bert_large_config.json" tokenizer = BertTokenizer(vocab_path) config = BertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) elif 'token_classification' == args['task']: model = BertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) # Plug pretrained bert model bert_model = BertForPreTraining.from_pretrained( "../embeddings/babert-bpe-mlm-large-512/babert_model_bpe_mlm_uncased_large_512_dup10-5_pytorch_babert_uncased_large_512_dup10-5_1120k.bin", config=config) model.bert = bert_model.bert elif 'albert-base-uncased-112500' == args['model_checkpoint']: vocab_path = "../embeddings/albert-base-uncased-112500/vocab.txt" config_path = "../embeddings/albert-base-uncased-112500/bert_config.json" tokenizer = BertTokenizer(vocab_path) config = AlbertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = AlbertForSequenceClassification(config) elif 'token_classification' == args['task']: model = AlbertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = AlbertForMultiLabelClassification(config) # Plug pretrained bert model albert_model = AlbertModel.from_pretrained( "../embeddings/albert-base-uncased-112500/albert_base_uncased_112500.bin", from_tf=False, config=config) model.albert = albert_model elif 'albert-base-uncased-96000' == args['model_checkpoint']: vocab_path = "../embeddings/albert-base-uncased-96000/vocab.txt" config_path = "../embeddings/albert-base-uncased-96000/bert_config.json" tokenizer = BertTokenizer(vocab_path) config = AlbertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = AlbertForSequenceClassification(config) elif 'token_classification' == args['task']: model = AlbertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = AlbertForMultiLabelClassification(config) # Plug pretrained bert model albert_model = AlbertModel.from_pretrained( "../embeddings/albert-base-uncased-96000/albert_base_uncased_96000.bin", from_tf=False, config=config) model.albert = albert_model elif 'albert-base-uncased-191k' == args['model_checkpoint']: vocab_path = "../embeddings/albert-base-uncased-191k/pytorch_models_albert_base_uncased_191500_vocab_uncased_30000.txt" config_path = "../embeddings/albert-base-uncased-191k/pytorch_models_albert_base_uncased_191500_albert_base_config.json" tokenizer = BertTokenizer(vocab_path) config = AlbertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = AlbertForSequenceClassification(config) elif 'token_classification' == args['task']: model = AlbertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = AlbertForMultiLabelClassification(config) # Plug pretrained bert model albert_model = AlbertModel.from_pretrained( "../embeddings/albert-base-uncased-191k/pytorch_models_albert_base_uncased_191500_pytorch_model_albert_base_191k.bin", from_tf=False, config=config) model.albert = albert_model elif 'babert-opensubtitle' == args['model_checkpoint']: # babert-opensubtitle # Prepare config & tokenizer vocab_path = "../embeddings/babert-opensubtitle/vocab.txt" config_path = "../embeddings/babert-opensubtitle/bert_config.json" tokenizer = BertTokenizer(vocab_path) config = BertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) elif 'token_classification' == args['task']: model = BertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) # Plug pretrained bert model bert_model = BertForPreTraining.from_pretrained( "../embeddings/babert-opensubtitle/model.ckpt-1000000.index", from_tf=True, config=config) model.bert = bert_model.bert elif 'babert-bpe-mlm-large-uncased-1100k' == args['model_checkpoint']: # babert_bpe # Prepare config & tokenizer vocab_path = "../embeddings/babert-bpe-mlm-large-uncased-1100k/pytorch_models_babert_uncased_large_1100k_vocab_uncased_30522.txt" config_path = "../embeddings/babert-bpe-mlm-large-uncased-1100k/pytorch_models_babert_uncased_large_1100k_bert_config.json" tokenizer = BertTokenizer(vocab_path) config = BertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) elif 'token_classification' == args['task']: model = BertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) # Plug pretrained bert model bert_model = BertForPreTraining.from_pretrained( "../embeddings/babert-bpe-mlm-large-uncased-1100k/pytorch_models_babert_uncased_large_1100k_pytorch_model_babert_large_1100k.bin", config=config) model.bert = bert_model.bert elif 'babert-bpe-mlm-large-uncased-1m' == args['model_checkpoint']: # babert_bpe # Prepare config & tokenizer vocab_path = "../embeddings/babert-bpe-mlm-large-uncased-1m/pytorch_models_babert_uncased_large_1mil_vocab_uncased_30522.txt" config_path = "../embeddings/babert-bpe-mlm-large-uncased-1m/pytorch_models_babert_uncased_large_1mil_bert_config.json" tokenizer = BertTokenizer(vocab_path) config = BertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) elif 'token_classification' == args['task']: model = BertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) # Plug pretrained bert model bert_model = BertForPreTraining.from_pretrained( "../embeddings/babert-bpe-mlm-large-uncased-1m/pytorch_models_babert_uncased_large_1mil_pytorch_model_babert_large_1mil.bin", config=config) model.bert = bert_model.bert elif 'babert-base-512' == args['model_checkpoint']: # babert_bpe # Prepare config & tokenizer vocab_path = "../embeddings/babert-base-512/pytorch_models_babert_base_512_vocab_uncased_30522.txt" config_path = "../embeddings/babert-base-512/pytorch_models_babert_base_512_bert_config.json" tokenizer = BertTokenizer(vocab_path) config = BertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) elif 'token_classification' == args['task']: model = BertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) # Plug pretrained bert model bert_model = BertForPreTraining.from_pretrained( "../embeddings/babert-base-512/pytorch_models_babert_base_512_pytorch_model_babert_base_uncased_512.bin", config=config) model.bert = bert_model.bert elif 'babert-bpe-mlm-large-uncased' == args['model_checkpoint']: # babert_bpe # Prepare config & tokenizer vocab_path = "../embeddings/babert-bpe-mlm-large-uncased/pytorch_models_babert_uncased_large_vocab_uncased_30522.txt" config_path = "../embeddings/babert-bpe-mlm-large-uncased/pytorch_models_babert_uncased_large_bert_config.json" tokenizer = BertTokenizer(vocab_path) config = BertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) elif 'token_classification' == args['task']: model = BertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) # Plug pretrained bert model bert_model = BertForPreTraining.from_pretrained( "../embeddings/babert-bpe-mlm-large-uncased/pytorch_models_babert_uncased_large_pytorch_model_babert_large_778500.bin", config=config) model.bert = bert_model.bert elif 'babert-bpe-mlm-uncased-128-dup10-5' == args['model_checkpoint']: # babert_bpe_wwmlm # Prepare config & tokenizer vocab_path = "../embeddings/babert-bpe-mlm-uncased-128-dup10-5/vocab.txt" config_path = "../embeddings/babert-bpe-mlm-uncased-128-dup10-5/bert_config.json" tokenizer = BertTokenizer(vocab_path) config = BertConfig.from_json_file(config_path) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) elif 'token_classification' == args['task']: model = BertForWordClassification(config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) # Plug pretrained bert model bert_model = BertForPreTraining.from_pretrained( "../embeddings/babert-bpe-mlm-uncased-128-dup10-5/pytorch_model.bin", config=config) model.bert = bert_model.bert elif 'bert-base-multilingual' in args['model_checkpoint']: # bert-base-multilingual-uncased or bert-base-multilingual-cased # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = BertTokenizer.from_pretrained(args['model_checkpoint']) config = BertConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'token_classification' == args['task']: model = BertForWordClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'xlm-mlm' in args['model_checkpoint']: # xlm-mlm-100-1280 # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = XLMTokenizer.from_pretrained(args['model_checkpoint']) config = XLMConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = XLMForSequenceClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'token_classification' == args['task']: model = XLMForWordClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'multi_label_classification' == args['task']: model = XLMForMultiLabelClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'xlm-roberta' in args['model_checkpoint']: # xlm-roberta-base or xlm-roberta-large # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = XLMRobertaTokenizer.from_pretrained( args['model_checkpoint']) config = XLMRobertaConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = XLMRobertaForSequenceClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'token_classification' == args['task']: model = XLMRobertaForWordClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'multi_label_classification' == args['task']: model = XLMRobertaForMultiLabelClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'word2vec' in args['model_checkpoint'] or 'fasttext' in args[ 'model_checkpoint']: # Prepare config & tokenizer vocab_path = args['vocab_path'] config_path = None word_tokenizer = args['word_tokenizer_class']() emb_path = args['embedding_path'][args['model_checkpoint']] _, vocab_map = load_vocab(vocab_path) tokenizer = SimpleTokenizer(vocab_map, word_tokenizer, lower=args["lower"]) vocab_list = list(tokenizer.vocab.keys()) config = BertConfig.from_pretrained('bert-base-uncased') if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] config.num_hidden_layers = args["num_layers"] if args['model_checkpoint'] == 'word2vec-twitter': embeddings = gen_embeddings(vocab_list, emb_path) config.hidden_size = 400 config.num_attention_heads = 8 if args['model_checkpoint'] == 'fasttext-cc-id' or args[ 'model_checkpoint'] == 'fasttext-cc-id-300-no-oov-uncased' or args[ 'model_checkpoint'] == 'fasttext-4B-id-300-no-oov-uncased': embeddings = gen_embeddings(vocab_list, emb_path, emb_dim=300) config.hidden_size = 300 config.num_attention_heads = 10 config.vocab_size = len(embeddings) # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config) model.bert.embeddings.word_embeddings.weight.data.copy_( torch.FloatTensor(embeddings)) elif 'token_classification' == args['task']: model = BertForWordClassification(config) model.bert.embeddings.word_embeddings.weight.data.copy_( torch.FloatTensor(embeddings)) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config) model.bert.embeddings.word_embeddings.weight.data.copy_( torch.FloatTensor(embeddings)) elif 'scratch' in args['model_checkpoint']: vocab_path, config_path = None, None tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") config = BertConfig.from_pretrained("bert-base-uncased") if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] config.num_hidden_layers = args["num_layers"] config.hidden_size = 300 config.num_attention_heads = 10 if 'sequence_classification' == args['task']: model = BertForSequenceClassification(config=config) elif 'token_classification' == args['task']: model = BertForWordClassification(config=config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification(config=config) elif 'indobenchmark' in args['model_checkpoint']: # indobenchmark models # Prepare config & tokenizer vocab_path, config_path = None, None tokenizer = BertTokenizer.from_pretrained(args['model_checkpoint']) config = BertConfig.from_pretrained(args['model_checkpoint']) if type(args['num_labels']) == list: config.num_labels = max(args['num_labels']) config.num_labels_list = args['num_labels'] else: config.num_labels = args['num_labels'] # Instantiate model if 'sequence_classification' == args['task']: model = BertForSequenceClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'token_classification' == args['task']: model = BertForWordClassification.from_pretrained( args['model_checkpoint'], config=config) elif 'multi_label_classification' == args['task']: model = BertForMultiLabelClassification.from_pretrained( args['model_checkpoint'], config=config) return model, tokenizer, vocab_path, config_path
model = BertForSequenceClassification.from_pretrained( model_name, num_labels=NUM_LABELS, output_attentions=False, output_hidden_states=False) print(' ') print('using Bert:', model_name) print(model) elif (('XLM' in model_name) or ('xlm' in model_name)): from transformers import XLMTokenizer, XLMForSequenceClassification, XLMConfig tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-enfr-1024', do_lower_case=True) model = XLMForSequenceClassification.from_pretrained( model_name, num_labels=NUM_LABELS, output_attentions=False, output_hidden_states=False, ) print(' ') print('using XLM:', model_name) elif 'gpt2' in model_name: from transformers import GPT2Tokenizer, GPT2PreTrainedModel, GPT2DoubleHeadsModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2', do_lower_case=True) tokenizer.cls_token = tokenizer.cls_token_id tokenizer.pad_token = tokenizer.eos_token from gpt2 import GPT2_multiclass_clf model = GPT2_multiclass_clf.from_pretrained( model_name, num_labels=NUM_LABELS,