def test_export_saved_model(self): model = Bert( vocab_size=21128, num_layers=12, num_attention_heads=8, return_states=True, return_attention_weights=True ) input_ids, segment_ids, input_mask = model.dummy_inputs() model(inputs=[input_ids, segment_ids, input_mask]) model.summary() model.save("models/export/2", include_optimizer=False)
def _check_bert_outputs(self, return_states=False, return_attention_weights=False): NUM_LAYERS = 4 model = Bert( vocab_size=100, num_layers=NUM_LAYERS, return_states=return_states, return_attention_weights=return_attention_weights, ) input_ids, segment_ids, attn_mask = self._build_bert_inputs() outputs = model(inputs=[input_ids, segment_ids, attn_mask]) sequence_outputs, pooled_outputs = outputs[0], outputs[1] self.assertAllEqual([2, 16, 768], sequence_outputs.shape) self.assertAllEqual([2, 768], pooled_outputs.shape) all_states, all_attn_weights = None, None if return_states and return_attention_weights: self.assertEqual(4, len(outputs)) all_states, all_attn_weights = outputs[2], outputs[3] elif return_states and not return_attention_weights: self.assertEqual(3, len(outputs)) all_states = outputs[2] elif not return_states and return_attention_weights: self.assertEqual(3, len(outputs)) all_attn_weights = outputs[2] else: self.assertEqual(2, len(outputs)) if all_states is not None: # self.assertEqual(2, len(all_states)) # for state in all_states: # self.assertAllEqual([2, 16, 768], state.shape) self.assertAllEqual([2, NUM_LAYERS, 16, 768], all_states.shape) if all_attn_weights is not None: # self.assertEqual(2, len(all_attn_weights)) # for attention in all_attn_weights: # self.assertAllEqual([2, 8, 16, 16], attention.shape) self.assertAllEqual([2, NUM_LAYERS, 8, 16, 16], all_attn_weights.shape)
def test_build_model(self): model = Bert(vocab_size=21128) input_ids, segment_ids, input_mask = model.dummy_inputs() model(inputs=[input_ids, segment_ids, input_mask]) model.summary()
def test_bert_config(self): model = Bert(vocab_size=100, num_layers=2, return_states=True, return_attention_weights=True) config = model.get_config() print(config)