コード例 #1
0
class Bot(LiacBot):
    name = 'BotTESTE'

    def __init__(self, depth):
        super(Bot, self).__init__()
        self.transpositionTable = TranspositionTable()
        self._depth = depth
        self.last_move = None

    # Retorna board de maior value da lista
    def __maxTake(self, moves):
        (move, board) = moves.head()
        maxi = (move, board, board.value)

        for (m, board) in moves:
            val = board.value
            if val > maxi[2]:
                maxi = (m, board, val)
        newMoves = moves.remove(maxi[0:2])
        return (maxi, newMoves)

    def __sortMoves(self, moves):
        for _ in range(5):
            (maxi, newMoves) = self.__maxTake(moves)
        for (_, board) in moves:
            val = board.value

    def __negaScout(self, board, depth, alpha, beta):
        if board.value == POS_INF:  # WIN
            return (None, POS_INF)
        if board.value == NEG_INF:  # LOSE
            return (None, NEG_INF)
        if depth == 0:
            return (None, board.value)

        # busca na tabela de transposicao
        ttEntry = self.transpositionTable.look_up(board.string, depth)
        if ttEntry != None:
            move, value = ttEntry
            return (move, value)

        moves = board.generate()
        if moves == []:  # DRAW
            return (None, 0)
        sorted(moves, key=itemgetter(1), reverse=False)

        firstChild = True
        for moveValue in moves:
            (move, _) = moveValue
            board.move(move)
            if firstChild:
                firstChild = False
                bestValue = -(self.__negaScout(board, depth - 1, -beta,
                                               -alpha)[1])
                bestMove = move
            else:
                score = -(self.__negaScout(board, depth - 1, -alpha - 1,
                                           -alpha)[1])
                if alpha < score and score < beta:
                    score = -(self.__negaScout(board, depth - 1, -beta,
                                               -alpha)[1])
                if bestValue < score:
                    bestValue = score
                    bestMove = move
            board.unmove(move)
            alpha = max(alpha, bestValue)
            if alpha >= beta:
                break

        # armazena na tabela de transposicao
        self.transpositionTable.store(board.string, depth, bestMove, bestValue)

        return (bestMove, bestValue)

    # gera o proximo movimento a partir da poda alfa e beta
    def __alphaBeta(self, board, depth, alpha, beta):
        if board.value == POS_INF:  # WIN
            return (None, POS_INF)
        if board.value == NEG_INF:  # LOSE
            return (None, NEG_INF)
        if depth == 0:
            return (None, board.value)

        # busca na tabela de transposicao
        ttEntry = self.transpositionTable.look_up(board.string, depth)
        if ttEntry != None:
            move, value = ttEntry
            return move, value

        moves = board.generate()
        if moves == []:  # DRAW
            return (None, 0)
        moves = sorted(moves, key=itemgetter(1), reverse=True)

        bestValue = NEG_INF
        (bestMove, _) = moves[0]
        for moveValue in moves:
            (move, _) = moveValue

            board.move(move)
            val = -(self.__alphaBeta(board, depth - 1, -beta, -alpha)[1])
            board.unmove(move)

            if bestValue < val:
                bestValue = val
                bestMove = move
            alpha = max(alpha, val)
            if alpha >= beta:
                break

        # armazena na tabela de transposicao
        self.transpositionTable.store(board.string, depth, bestMove, bestValue)

        return (bestMove, bestValue)

    def on_move(self, state):
        print 'Generating a move...\n',
        board = Board(state)

        if state['bad_move']:
            print state['board']
            raw_input()

        t0 = time.time()
        move, value = self.__negaScout(board, self._depth, NEG_INF, POS_INF)
        t = time.time()
        print 'Time:', t - t0

        self.last_move = move
        print move, ' value: ', value
        self.send_move(move[0], move[1])
        self.color = state["who_moves"]

    def on_game_over(self, state):
        if state['draw']:
            print 'Draw!'
        elif state['winner'] == self.color:
            print 'We won!'
        else:
            print 'We lost!'
コード例 #2
0
ファイル: bot_beta.py プロジェクト: mhbackes/ia-bot
class Bot(LiacBot):
	name = 'Bot'

	def __init__(self, depth):
		super(Bot, self).__init__()
		self.transpositionTable = TranspositionTable()
		self._depth = depth
		self.last_move = None
		
	# Retorna board de maior value da lista
	def __maxTake(self, moves):
		(move, board) = moves.head()
		maxi = (move, board, board.value)
		
		for (m, board) in moves:
			val = board.value
			if val > maxi[2]:
				maxi = (m, board, val)
		newMoves = moves.remove(maxi[0:2])
		return (maxi, newMoves)		
	
	def __sortMoves(self, moves):
		for _ in range(5):
			(maxi, newMoves) = self.__maxTake(moves)
		for (_, board) in moves:
			val = board.value
	
	def __negaScout(self, board, depth, alpha, beta):
		if board.value == POS_INF: # WIN
			return (None, POS_INF)
		if board.value == NEG_INF: # LOSE
			return (None, NEG_INF)
		if depth == 0:
			return (None, board.value)
		
		# busca na tabela de transposicao
		ttEntry = self.transpositionTable.look_up(board.string, depth)
		if ttEntry != None:
			move, value = ttEntry
			return (move, value)
		
		moves = board.generate()
		if moves == []: # DRAW
			return (None, 0)
		sorted(moves, key=itemgetter(1), reverse=True)
		
		firstChild = True
		for moveValue in moves:
			(move, _) = moveValue
			board.move(move)
			if firstChild:
				firstChild = False
				bestValue = -(self.__negaScout(board, depth - 1, -beta, -alpha)[1])
				bestMove = move
			else:
				score = -(self.__negaScout(board, depth - 1, -alpha -1, -alpha)[1])
				if alpha < score and score < beta:
					score = -(self.__negaScout(board, depth - 1, -beta, -alpha)[1])
				if bestValue < score:
					bestValue = score
					bestMove = move
			board.unmove(move)
			alpha = max(alpha, bestValue)
			if alpha >= beta:
				break
				
		# armazena na tabela de transposicao
		self.transpositionTable.store(board.string, depth, bestMove, bestValue)
		
		return (bestMove, bestValue)
		
	# gera o proximo movimento a partir da poda alfa e beta
	def __alphaBeta(self, board, depth, alpha, beta):
		if board.value == POS_INF: # WIN
			return (None, POS_INF)
		if board.value == NEG_INF: # LOSE
			return (None, NEG_INF)
		if depth == 0:
			return (None, board.value)
		
		# busca na tabela de transposicao
		ttEntry = self.transpositionTable.look_up(board.string, depth)
		if ttEntry != None:
			move, value = ttEntry
			return move, value
		
		moves = board.generate()
		if moves == []: # DRAW
			return (None, 0)
		moves = sorted(moves, key=itemgetter(1), reverse=True)
		
		bestValue = NEG_INF
		(bestMove, _) = moves[0]
		for moveValue in moves:
			(move, _) = moveValue
			
			board.move(move)
			val = -(self.__alphaBeta(board, depth - 1, -beta, -alpha)[1])
			board.unmove(move)
			
			if bestValue < val:
				bestValue = val
				bestMove = move
			alpha = max(alpha, val)
			if alpha >= beta:
				break
		
		# armazena na tabela de transposicao
		self.transpositionTable.store(board.string, depth, bestMove, bestValue)
		
		return (bestMove, bestValue)

	def on_move(self, state):
		print 'Generating a move...\n',
		board = Board(state)

		if state['bad_move']:
			print state['board']
			raw_input()

		t0 = time.time()
		move, value = self.__negaScout(board, self._depth, NEG_INF, POS_INF)
		t = time.time()
		print 'Time:', t - t0

		self.last_move = move
		print move, ' value: ', value
		self.send_move(move[0], move[1])
		self.color = state["who_moves"]

	def on_game_over(self, state):
		if state['draw']:
			print 'Draw!'
		elif state['winner'] == self.color:
			print 'We won!'
		else:
			print 'We lost!'
コード例 #3
0
ファイル: terminator.py プロジェクト: mhbackes/ia-bot
class Bot(LiacBot):
    name = 'Terminator'

    def __init__(self, depth):
        super(Bot, self).__init__()
        self.transpositionTable = TranspositionTable()
        self._depth = depth
        self.last_move = None
        self.color = 0
        self.transposition_hits = 0
        self.nodes_explored = 0
        self.cuts = 0
        self.fails = 0

    # Retorna board de maior value da lista
    def _maxTake(self, moves):
        (move, board) = moves.head()
        maxi = (move, board, board.value)

        for (m, board) in moves:
            val = board.value
            if val > maxi[2]:
                maxi = (m, board, val)
        newMoves = moves.remove(maxi[0:2])
        return (maxi, newMoves)

    def _sortMoves(self, moves):
        for _ in range(5):
            (maxi, newMoves) = self._maxTake(moves)
        for (_, board) in moves:
            val = board.value

    def _nega_scout(self, board, depth, alpha, beta, color, scout=False):
        self.nodes_explored += 1
        if board.value == POS_INF:  # WIN
            self.cuts += 1
            return None, POS_INF * color
        if board.value == NEG_INF:  # LOSE
            self.cuts += 1
            return None, NEG_INF * color
        if depth == 0:
            return None, board.value * color

        # busca na tabela de transposicao
        tt_entry = self.transpositionTable.look_up((board.string, color), depth)
        if None != tt_entry:
            tt_move, tt_value = tt_entry
            self.transposition_hits += 1
            return tt_move, tt_value

        moves = board.generate(color)
        if not moves:  # DRAW
            self.cuts += 1
            return None, 0

        moves = sorted(moves, key=itemgetter(1), reverse=(color==WHITE))

        first_child = True
        for moveValue in moves:
            move, value = moveValue
            board.move(move, color, value)
            if first_child:
                first_child = False
                best_value = -(self._nega_scout(board, depth - 1, -beta, -alpha, -color, scout)[1])
                best_move = move
            else:
                score = -(self._nega_scout(board, depth - 1, -alpha - 1, -alpha, -color, True)[1])
                if alpha < score < beta:
                    self.fails += 1
                    score = -(self._nega_scout(board, depth - 1, -beta, -alpha, -color, scout)[1])
                if best_value < score:
                    best_value = score
                    best_move = move
            board.unmove(move, color)
            alpha = max(alpha, best_value)
            if alpha >= beta:
                self.cuts += 1
                break
            
        # armazena na tabela de transposicao se nao for o scout
        if not scout:
            self.transpositionTable.store((board.string, color), depth, best_move, best_value)

        return best_move, best_value

    # gera o proximo movimento a partir da poda alfa e beta
    def _alpha_beta(self, board, depth, alpha, beta, color):
        self.nodes_explored += 1
        if board.value == POS_INF:  # WIN
            self.cuts += 1
            return None, POS_INF * color
        if board.value == NEG_INF:  # LOSE
            self.cuts += 1
            return None, NEG_INF * color
        if depth == 0:
            return None, board.value * color

        # busca na tabela de transposicao
        tt_entry = self.transpositionTable.look_up((board.string, color), depth)
        if None != tt_entry:
            tt_move, tt_value = tt_entry
            self.transposition_hits += 1
            return tt_move, tt_value

        moves = board.generate(color)
        if not moves:  # DRAW
            self.cuts += 1
            return None, 0

        moves = sorted(moves, key=itemgetter(1), reverse=(color==WHITE))

        best_move, best_value = moves[0], NEG_INF
        for moveValue in moves:
            move, _ = moveValue

            board.move(move, color)
            val = -(self._alpha_beta(board, depth - 1, -beta, -alpha, -color)[1])
            board.unmove(move, color)

            if best_value < val:
                best_value = val
                best_move = move
            alpha = max(alpha, val)
            if alpha >= beta:
                self.cuts += 1
                break

        # armazena na tabela de transposicao
        self.transpositionTable.store((board.string, color), depth, best_move, best_value * color)

        return best_move, best_value

    def on_move(self, state):
        self.color = state["who_moves"]
        print '--------------------------------------'
        print 'Talk to the hand...\n',
        board = Board(state)

        if state['bad_move']:
            print state['board']
            raw_input()

        self.transposition_hits = 0
        self.nodes_explored = 0
        self.cuts = 0
        t0 = time.time()
        move, value = self._nega_scout(board, self._depth, NEG_INF, POS_INF, self.color)
        #value *= self.color
        t = time.time()
        print 'Time:', t - t0
        print 'TT Size: ', len(self.transpositionTable._table)
        print 'TT Hits: ', self.transposition_hits
        print 'Nodes Explored: ', self.nodes_explored
        print 'Cuts: ', self.cuts
        print 'Scout Fails: ', self.fails
        self.last_move = move
        print move, ' value: ', value
        self.send_move(move[0], move[1])

    def on_game_over(self, state):
        if state['draw']:
            print 'No problemo.'
        elif state['winner'] == self.color:
            print 'You have been terminated.'
        else:
            print 'I\'ll be back.'