コード例 #1
0
def print_stat(data_frame, real_column, prediction_column):
    data_frame = data_frame.sort_values(real_column)

    pearson = pearson_corr(data_frame[real_column].tolist(),
                           data_frame[prediction_column].tolist())
    spearman = spearman_corr(data_frame[real_column].tolist(),
                             data_frame[prediction_column].tolist())
    rmse_value = rmse(data_frame[real_column].tolist(),
                      data_frame[prediction_column].tolist())
    mae = mean_absolute_error(data_frame[real_column].tolist(),
                              data_frame[prediction_column].tolist())

    textstr = 'RMSE=%.4f\nMAE=%.4f\nPearson Correlation=%.4f\nSpearman Correlation=%.4f' % (
        rmse_value, mae, pearson, spearman)

    print(textstr)
コード例 #2
0
def draw_scatterplot(data_frame, real_column, prediction_column, path, topic):
    data_frame = data_frame.sort_values(real_column)
    sort_id = list(range(0, len(data_frame.index)))
    data_frame['id'] = pd.Series(sort_id).values

    data_frame = fit(data_frame, real_column)
    data_frame = fit(data_frame, prediction_column)

    pearson = pearson_corr(data_frame[real_column].tolist(),
                           data_frame[prediction_column].tolist())
    spearman = spearman_corr(data_frame[real_column].tolist(),
                             data_frame[prediction_column].tolist())
    rmse_value = rmse(data_frame[real_column].tolist(),
                      data_frame[prediction_column].tolist())
    mae = mean_absolute_error(data_frame[real_column].tolist(),
                              data_frame[prediction_column].tolist())

    textstr = 'RMSE=%.4f\nMAE=%.4f\nPearson Correlation=%.4f\nSpearman Correlation=%.4f' % (
        rmse_value, mae, pearson, spearman)

    plt.figure()
    ax = data_frame.plot(kind='scatter',
                         x='id',
                         y=real_column,
                         color='DarkBlue',
                         label='z_mean',
                         title=topic)
    ax = data_frame.plot(kind='scatter',
                         x='id',
                         y=prediction_column,
                         color='DarkGreen',
                         label='predicted z_mean',
                         ax=ax)
    ax.text(0.5 * data_frame.shape[0],
            min(min(data_frame[real_column].tolist()),
                min(data_frame[prediction_column].tolist())),
            textstr,
            fontsize=10)

    fig = ax.get_figure()
    fig.savefig(path)