コード例 #1
0
ファイル: core.py プロジェクト: wangleiphy/trax
def one_hot(x, size, dtype=np.float32):  # pylint: disable=invalid-name
  """Make a n+1 dim one-hot array from n dim int-categorical array."""
  arange_size = np.arange(size)
  if backend.get_name() == 'jax':
    # Work around a jax broadcasting issue.
    arange_size = jax.lax.tie_in(x, arange_size)
  return np.array(x[..., np.newaxis] == arange_size, dtype)
コード例 #2
0
        def make_self_mask(N, M, k):  # pylint: disable=invalid-name
            """Masks out elements attending to self.

      Args:
        N: number of query positions
        M: number of key positions
        k: position of the initial query element

      Returns:
        N x M mask, where 1.0 indicates that attention is not allowed.
      """
            x = jax.lax.tie_in(k, np.arange(N, dtype=np.int32))
            y = jax.lax.tie_in(k, np.arange(M, dtype=np.int32))
            mask = jax.lax.eq((jax.lax.broadcast_in_dim(
                x, shape=(N, M), broadcast_dimensions=(0, )) + k),
                              jax.lax.broadcast(y, [N]))
            mask = jax.lax.convert_element_type(mask, np.float32)
            return mask
コード例 #3
0
 def test_batch_norm(self):
   input_shape = (2, 3, 4)
   input_dtype = np.float32
   input_signature = ShapeDtype(input_shape, input_dtype)
   eps = 1e-5
   inp1 = np.reshape(np.arange(np.prod(input_shape), dtype=input_dtype),
                     input_shape)
   m1 = 11.5  # Mean of this random input.
   v1 = 47.9167  # Variance of this random input.
   layer = normalization.BatchNorm(axis=(0, 1, 2))
   _, _ = layer.initialize_once(input_signature)
   state = layer.state
   onp.testing.assert_allclose(state[0], 0)
   onp.testing.assert_allclose(state[1], 1)
   self.assertEqual(state[2], 0)
   out = layer(inp1)
   state = layer.state
   onp.testing.assert_allclose(state[0], m1 * 0.001)
   onp.testing.assert_allclose(state[1], 0.999 + v1 * 0.001, rtol=1e-6)
   self.assertEqual(state[2], 1)
   onp.testing.assert_allclose(out, (inp1 - m1) / np.sqrt(v1 + eps),
                               rtol=1e-6)
コード例 #4
0
    def single_call(self, qk, v, buckets, rng=None):
        # We use the same vector as both a query and a key.
        seqlen = qk.shape[-2]
        assert int(buckets.shape[0]) == self.n_hashes * seqlen

        ticker = jax.lax.tie_in(qk, np.arange(self.n_hashes * seqlen))
        buckets_and_t = seqlen * buckets + (ticker % seqlen)
        buckets_and_t = jax.lax.stop_gradient(buckets_and_t)

        # Hash-based sort ("s" at the start of variable names means "sorted")
        sbuckets_and_t, sticker = jax.lax.sort_key_val(buckets_and_t,
                                                       ticker,
                                                       dimension=-1)
        _, undo_sort = jax.lax.sort_key_val(sticker, ticker, dimension=-1)
        sbuckets_and_t = jax.lax.stop_gradient(sbuckets_and_t)
        sticker = jax.lax.stop_gradient(sticker)
        undo_sort = jax.lax.stop_gradient(undo_sort)

        st = (sticker % seqlen)
        sqk = np.take(qk, st, axis=0)
        sv = np.take(v, st, axis=0)

        # Split off a "bin" axis so that attention only occurs within chunks.
        bq_t = bkv_t = np.reshape(st, (self.n_hashes * self.n_bins, -1))
        bqk = np.reshape(sqk, (self.n_hashes * self.n_bins, -1, sqk.shape[-1]))
        bv = np.reshape(sv, (self.n_hashes * self.n_bins, -1, sv.shape[-1]))
        bq_buckets = bkv_buckets = np.reshape(
            sbuckets_and_t // seqlen, (self.n_hashes * self.n_bins, -1))

        # Hashing operates on unit-length vectors. Unnormalized query vectors are
        # fine because they effectively provide a learnable temperature for the
        # attention softmax, but normalizing keys is needed so that similarity for
        # the purposes of attention correctly corresponds to hash locality.
        bq = bqk
        bk = self.make_unit_length(bqk)

        # Allow each chunk to attend within itself, and also one chunk back. Chunk
        # boundaries might occur in the middle of a sequence of items from the
        # same bucket, so this increases the chances of attending to relevant items.
        # TODO(kitaev): benchmark whether XLA pad operation is noticeably faster.
        def look_one_back(x):
            if len(x.shape) == 2:
                x_extra = np.concatenate([x[-1:, :], x[:-1, :]], axis=0)
            else:
                x_extra = np.concatenate([x[-1:, :, :], x[:-1, :, :]], axis=0)
            return np.concatenate([x, x_extra], axis=1)

        bk = look_one_back(bk)
        bv = look_one_back(bv)
        bkv_t = look_one_back(bkv_t)
        bkv_buckets = look_one_back(bkv_buckets)

        # Dot-product attention.
        dots = np.matmul(bq, np.swapaxes(bk, -1, -2)) / np.sqrt(bq.shape[-1])

        # Causal masking
        mask = jax.lax.convert_element_type(
            jax.lax.lt(bq_t[:, :, None], bkv_t[:, None, :]), np.float32)
        dots = dots - 1e9 * mask

        # Mask out attention to self except when no other targets are available.
        self_mask = jax.lax.convert_element_type(
            jax.lax.eq(bq_t[:, :, None], bkv_t[:, None, :]), np.float32)
        dots = dots - 1e5 * self_mask

        # Mask out attention to other hash buckets.
        if not self._attend_across_buckets:
            bucket_mask = jax.lax.convert_element_type(
                jax.lax.ne(bq_buckets[:, :, None], bkv_buckets[:, None, :]),
                np.float32)
            dots = dots - 1e7 * bucket_mask

        # Don't double-count query-key pairs across multiple rounds of hashing.
        # There are two possible strategies here. (1) The default is to count how
        # many times a query-key pair is repeated, and to lower its log-prob
        # correspondingly at each repetition. (2) When hard_k is set, the code
        # instead masks all but the first occurence of each query-key pair.
        # TODO(kitaev): is one strategy faster or more numerically stable?
        if not self._allow_duplicate_attention:
            locs1 = undo_sort // bq_t.shape[-1]
            locs2 = (locs1 + 1) % (self.n_hashes * self.n_bins)
            if not self._attend_across_buckets:
                locs1 = buckets * (self.n_hashes * self.n_bins) + locs1
                locs2 = buckets * (self.n_hashes * self.n_bins) + locs2
            locs = np.moveaxis(
                np.concatenate([
                    np.reshape(locs1, (self.n_hashes, seqlen)),
                    np.reshape(locs2, (self.n_hashes, seqlen)),
                ], 0), 0, -1)  # produces shape (seqlen, 2 * self.n_hashes)
            slocs = np.take(locs, st, axis=0)
            b_locs = np.reshape(
                slocs, (self.n_hashes * self.n_bins, -1, 2 * self.n_hashes))
            # Queries always use the primary location (based on locs1).
            b_locs1 = b_locs[:, :, None, :self.n_hashes]
            if self._hard_k > 0:
                range_n_hashes = jax.lax.tie_in(b_locs,
                                                np.arange(self.n_hashes))
                nouse_locs = (range_n_hashes[:, None] >
                              range_n_hashes[None, :])
                nouse_locs = 2 * nouse_locs - 1  # 1 = use, -1 = don't use
                nouse_locs = np.reshape(
                    np.broadcast_to(
                        nouse_locs[:, None, :],
                        (self.n_hashes, self.n_bins, self.n_hashes)),
                    (self.n_hashes * self.n_bins, 1, 1, self.n_hashes))
                b_locs1 = b_locs1 * nouse_locs
            bq_locs = np.broadcast_to(b_locs1,
                                      b_locs.shape[:2] + (2, self.n_hashes))
            bq_locs = np.reshape(bq_locs, b_locs.shape)
            bkv_locs = look_one_back(b_locs)

            dup_counts = np.sum(jax.lax.convert_element_type(
                jax.lax.eq(bq_locs[:, :, None, :], bkv_locs[:, None, :, :]),
                np.float32),
                                axis=-1)
            assert dup_counts.shape == dots.shape
            if self._hard_k > 0:
                dots = dots - 1e7 * jax.lax.stop_gradient(dup_counts)
            else:
                dots = dots - jax.lax.stop_gradient(np.log(dup_counts + 1e-9))

        # Each query only attends to the top k most relevant keys.
        if self._hard_k > 0:
            b_top_dots = np.sort(dots)[...,
                                       -self._hard_k:]  # Get the top k dots.
            b_top_dots = jax.lax.stop_gradient(b_top_dots)
            s_top_dots = np.reshape(b_top_dots, (-1, self._hard_k))
            top_dots = np.take(s_top_dots, undo_sort, axis=0)

            merged_top_dots = np.moveaxis(
                np.reshape(top_dots, (self.n_hashes, seqlen, self._hard_k)), 0,
                -1)
            merged_top_dots = np.reshape(merged_top_dots, (seqlen, -1))

            dots_thresh = np.sort(merged_top_dots)[:, -self._hard_k]
            # It's possible to compute the partition function at this point, but right
            # now this codepath isn't set up for backprop, and there might also be
            # issues computing it this way if two dot-products are exactly equal.

            sdots_thresh = dots_thresh[st]
            bdots_thresh = np.reshape(sdots_thresh,
                                      (self.n_hashes * self.n_bins, -1))
            bdots_thresh = jax.lax.stop_gradient(bdots_thresh)

            top_k_mask = jax.lax.convert_element_type(
                dots < bdots_thresh[..., None], np.float32)
            dots = dots - 1e7 * jax.lax.stop_gradient(top_k_mask)

        # Softmax.
        dots_logsumexp = backend.logsumexp(dots, axis=-1, keepdims=True)
        dots = np.exp(dots - dots_logsumexp)

        if self._dropout > 0.0:
            # Dropout is broadcast across the bin dimension
            dropout_shape = (1, dots.shape[-2], dots.shape[-1])
            keep_prob = jax.lax.tie_in(dots, 1.0 - self._dropout)
            keep = backend.random.bernoulli(rng, keep_prob, dropout_shape)
            multiplier = keep.astype(dots.dtype) / jax.lax.tie_in(
                keep, keep_prob)
            dots = dots * multiplier

        bo = np.matmul(dots, bv)
        so = np.reshape(bo, (-1, bo.shape[-1]))
        slogits = np.reshape(dots_logsumexp, (-1, ))

        def unsort_for_output_impl(so, slogits):
            o = np.take(so, undo_sort, axis=0)
            # Sorting is considerably faster than gather, but first we need to get the
            # XLA compiler to abandon the idea of fusing this sort with the input sort
            # (which introduces a computation cycle and leads to a crash).
            # TODO(kitaev): remove "sticker_" variable if XLA is fixed.
            sticker_ = sticker + jax.lax.convert_element_type(
                slogits[0] > 0, sticker.dtype)
            _, logits = jax.lax.sort_key_val(sticker_, slogits, dimension=-1)
            return o, logits

        def unsort_for_output_vjp(so, slogits):
            """Custom gradient for unsort_for_output."""
            so = jax.lax.stop_gradient(so)
            slogits = jax.lax.stop_gradient(slogits)
            o, logits = unsort_for_output_impl(so, slogits)

            def vjpfun(o_logits_grads):
                so_grad = np.take(o_logits_grads[0], sticker, axis=0)
                # TODO(kitaev): this exists to match the forward pass, but I'm not sure
                # if it's actually required.
                buckets_and_t_ = buckets_and_t + jax.lax.convert_element_type(
                    o_logits_grads[1][0] > 0, buckets_and_t.dtype)
                _, slogits_grad = jax.lax.sort_key_val(buckets_and_t_,
                                                       o_logits_grads[1],
                                                       dimension=-1)
                return (so_grad, slogits_grad)

            return (o, logits), vjpfun

        unsort_for_output = jax.custom_transforms(unsort_for_output_impl)
        jax.defvjp_all(unsort_for_output, unsort_for_output_vjp)
        o, logits = unsort_for_output_impl(so, slogits)

        if self.n_hashes == 1:
            out = o
        else:
            o = np.reshape(o, (self.n_hashes, seqlen, o.shape[-1]))
            logits = np.reshape(logits, (self.n_hashes, seqlen, 1))
            probs = np.exp(logits -
                           backend.logsumexp(logits, axis=0, keepdims=True))
            out = np.sum(o * probs, axis=0)

        assert out.shape == v.shape
        return out
コード例 #5
0
    def hash_vectors(self, vecs, rng):
        # See https://arxiv.org/pdf/1509.02897.pdf
        # We sample a different random rotation for each round of hashing to
        # decrease the probability of hash misses.
        assert self.n_buckets % 2 == 0

        # If we factorize the hash, find a factor dividing n_buckets nicely.
        rot_size, factor_list = self.n_buckets, [self.n_buckets]
        if self._factorize_hash:
            # If we are given a list of factors, verify it and use later.
            if isinstance(self._factorize_hash, list):
                rot_size, product = 0, 1
                factor_list = self._factorize_hash
                for factor in factor_list:
                    assert factor % 2 == 0
                    product *= factor
                    rot_size += factor
                assert product == self.n_buckets
            else:  # Find one factor if just set to True.
                # We want to represent self.n_buckets = factor * rest so that
                # (1) both factor and rest are even, and (2) factor + rest is minimal.
                # To compute this we start from factor = sqrt(n_buckets) and go down
                # with it until we find one that satisfies the constraints above.
                factor = int(math.sqrt(self.n_buckets))
                while factor > 0 and not (self.n_buckets % factor == 0
                                          and factor % 2 == 0 and
                                          (self.n_buckets // factor) % 2 == 0):
                    factor -= 1
                if factor > 2:  # Factor of 2 does not warrant the effort.
                    rot_size = factor + (self.n_buckets // factor)
                    factor_list = [factor, self.n_buckets // factor]

        rotations_shape = (vecs.shape[-1],
                           self.n_hashes if self._rehash_each_round else 1,
                           rot_size // 2)

        rng = jax.lax.tie_in(vecs, rng)
        rng, subrng = backend.random.split(rng)
        random_rotations = self._sample_rotation(rotations_shape, vecs, rng)

        # TODO(lukaszkaiser): the dropout mask will be used for all rounds of
        # hashing, so it's shared between them. Check if that's what we want.
        dropped_vecs = self.drop_for_hash(vecs, subrng)
        rotated_vecs = np.einsum('tf,fhb->htb', dropped_vecs, random_rotations)

        if self._rehash_each_round:
            if self._factorize_hash and len(factor_list) > 1:
                # We factorized self.n_buckets as the product of factor_list.
                # Get the buckets for them and combine.
                buckets, cur_sum, cur_product = None, 0, 1
                for factor in factor_list:
                    rv = rotated_vecs[..., cur_sum:cur_sum + (factor // 2)]
                    cur_sum += factor // 2
                    rv = np.concatenate([rv, -rv], axis=-1)
                    if buckets is None:
                        buckets = np.argmax(rv, axis=-1)
                    else:
                        buckets += cur_product * np.argmax(rv, axis=-1)
                    cur_product *= factor
            else:
                rotated_vecs = np.concatenate([rotated_vecs, -rotated_vecs],
                                              axis=-1)
                buckets = np.argmax(rotated_vecs, axis=-1)
            # buckets is now (self.n_hashes, seqlen). Next we add offsets so that
            # bucket numbers from different hashing rounds don't overlap.
            offsets = jax.lax.tie_in(buckets, np.arange(self.n_hashes))
            offsets = np.reshape(offsets * self.n_buckets, (-1, 1))
            buckets = np.reshape(buckets + offsets, (-1, ))
        else:
            assert not self._factorize_hash
            rotated_vecs = np.concatenate([rotated_vecs, -rotated_vecs],
                                          axis=-1)
            # In this configuration, we map each item to the top self.n_hashes buckets
            rotated_vecs = np.squeeze(rotated_vecs, 0)
            bucket_range = jax.lax.tie_in(vecs,
                                          np.arange(rotated_vecs.shape[-1]))
            bucket_range = np.reshape(bucket_range, (1, -1))
            bucket_range = np.broadcast_to(bucket_range, rotated_vecs.shape)

            _, buckets = jax.lax.sort_key_val(rotated_vecs,
                                              bucket_range,
                                              dimension=-1)
            buckets = buckets[:, -self.n_hashes:]
            buckets = np.reshape(np.moveaxis(buckets, 0, -1), (-1, ))

        return buckets
コード例 #6
0
    def _sample_rotation(self, shape, vecs, rng):
        """Samples a rotation matrix, either randomly or based on `vecs`."""

        if not self._data_rotation:
            return jax.random.normal(rng, shape).astype('float32')

        assert len(shape) == 3
        unused_n_dim, n_hashes, r_div_2 = shape

        assert len(vecs.shape) == 2
        n_vecs = vecs.shape[0]

        rng1, rng2 = backend.random.split(rng, num=2)

        # We need to sample 2 * n_hashes * r_div_2 vectors from `vecs` at random.
        num_needed = 2 * n_hashes * r_div_2
        if n_vecs < num_needed:
            # shape = (n_hashes, r_div_2)
            random_idxs_1 = jax.random.randint(rng1, (n_hashes, r_div_2), 0,
                                               n_vecs)
            random_idxs_2 = jax.random.randint(rng2, (n_hashes, r_div_2), 0,
                                               n_vecs)
        else:
            # Sample without replacement.
            shuffled_indices = jax.random.shuffle(rng1, np.arange(n_vecs))
            random_idxs = np.reshape(shuffled_indices[:num_needed],
                                     (2, n_hashes, r_div_2))
            random_idxs_1 = random_idxs[0]
            random_idxs_2 = random_idxs[1]

        if self._data_rotation_farthest:
            # shape = (n_hashes * r_div_2, )
            random_idxs_1 = np.reshape(random_idxs_1, (-1, ))
            random_vecs_1 = vecs[random_idxs_1]

            # Sample candidates for vec2s.
            rng, subrng = backend.random.split(rng)
            # shape = (self._data_rotation_farthest_num, n_hashes * r_div_2)
            candidate_idxs_2 = jax.random.randint(
                subrng, (self._data_rotation_farthest_num, n_hashes * r_div_2),
                0, n_vecs)
            candidate_vecs_2 = vecs[candidate_idxs_2]
            # shape = candidate_idxs_2.shape
            distances = -np.abs(
                np.einsum('hd,chd->ch', random_vecs_1, candidate_vecs_2))
            # shape = (n_hashes * r_div_2,)
            farthest_idxs = np.argmax(distances, axis=0)
            # candidate_vecs_2.shape
            random_vecs_2 = candidate_vecs_2[farthest_idxs,
                                             np.arange(n_hashes * r_div_2)]

            # reshape to (n_hashes, r_div_2, n_dim)
            random_vecs_1 = np.reshape(random_vecs_1, (n_hashes, r_div_2, -1))
            random_vecs_2 = np.reshape(random_vecs_2, (n_hashes, r_div_2, -1))
        else:
            # shape = (n_hashes, r_div_2, n_dim)
            random_vecs_1 = vecs[random_idxs_1]
            random_vecs_2 = vecs[random_idxs_2]

        # shape = (n_dim, n_hashes, r_div_2)
        return np.transpose(random_vecs_2 - random_vecs_1, axes=[2, 0, 1])
コード例 #7
0
    def _forward_train_eval(self, inputs, rng):
        (inputs, original_len, n_bins) = self._pad_inputs(inputs)
        q, k, v = inputs
        seqlen = q.shape[-2]
        # q/k/v are n_batch*n_heads, seqlen, d_head
        # Time indices for causal masking.
        t = jax.lax.tie_in(q, np.arange(seqlen))

        # Split off a "bin" axis for chunks of consecutive items.
        bq_t = np.reshape(t, (n_bins, -1))
        bq = np.reshape(q, (q.shape[0], n_bins, -1, q.shape[-1]))
        if self._share_qk:
            bk = self.make_unit_length(bq)
        else:
            bk = np.reshape(k, (k.shape[0], n_bins, -1, k.shape[-1]))
        bv = np.reshape(v, (v.shape[0], n_bins, -1, v.shape[-1]))

        # Allow each chunk to attend within itself, and also one chunk back.
        def look_one_back(x):
            # Output: pairs [ bin_i bin_{i-1} ] concatenated on the time axis.
            if len(x.shape) == 2:
                x_extra = np.concatenate([x[-1:, :], x[:-1, :]], axis=0)
                return np.concatenate([x, x_extra], axis=1)
            else:
                assert len(x.shape) == 4
                x_extra = np.concatenate([x[:, -1:, :, :], x[:, :-1, :, :]],
                                         axis=1)
                return np.concatenate([x, x_extra], axis=2)

        bkv_t = look_one_back(bq_t)
        bk = look_one_back(bk)
        bv = look_one_back(bv)

        # Dot-product attention.
        dots = np.matmul(bq, np.swapaxes(bk, -1, -2)) / np.sqrt(bq.shape[-1])

        # Causal masking based on the time indices.
        mask = jax.lax.convert_element_type(
            jax.lax.lt(bq_t[None, :, :, None], bkv_t[None, :, None, :]),
            np.float32)
        dots = dots - 1e9 * mask

        # Mask out attention to self except when no other targets are available.
        if self._share_qk:
            self_mask = jax.lax.broadcasted_eye(dots.dtype, dots.shape, (2, 3))
            self_mask = jax.lax.tie_in(dots, self_mask)
            dots = dots - 1e5 * self_mask

        # Softmax.
        dots = np.exp(dots - backend.logsumexp(dots, axis=-1, keepdims=True))

        if self.dropout > 0.0:
            # Dropout is broadcast across the batch+head dimension
            dropout_shape = (1, dots.shape[-3], dots.shape[-2], dots.shape[-1])
            keep_prob = jax.lax.tie_in(dots, 1.0 - self.dropout)
            keep = backend.random.bernoulli(rng, keep_prob, dropout_shape)
            multiplier = keep.astype(dots.dtype) / jax.lax.tie_in(
                keep, keep_prob)
            dots = dots * multiplier

        bo = np.matmul(dots, bv)

        output = np.reshape(bo, (bo.shape[0], -1, bo.shape[-1]))
        assert output.shape == v.shape
        return output[..., :original_len, :]