コード例 #1
0
    def forward_with_state(self, xs, weights, state, rng):
        self._validate_forward_inputs(xs)
        (step, layers_state) = state
        # Get N+1 rngs, N for running layers and one extra.
        rngs = _split_rngs(rng, self._n_layers + 1)
        rng0, rngs = rngs[0], rngs[1:]
        if not self.sublayers:  # No-op: leave args unchanged.
            return (xs, (step + 1, layers_state))

        # Prepare the stack and do some safety checks as in the parent class.
        stack = xs
        new_state = []
        n_layers = self._n_layers
        if n_layers != 1 and len(weights) != n_layers:
            raise ValueError(
                'number of weights ({}) not equal to number of layers '
                '({})'.format(len(weights), n_layers))
        if n_layers != 1 and len(layers_state) != n_layers:
            raise ValueError(
                'length of state ({}) not equal to number of layers '
                '({})'.format(len(layers_state), n_layers))

        # TODO(chowdhery): try different strategies, also try running not all
        # layers backwards by using math.stop_gradient where needed.

        # Calculate how many layers to run forward.
        if self._mode == 'train':
            # warmup goes from 1.0 at start to 0.0 at skipping_warmup_steps and after
            w_steps = float(self._skipping_warmup_steps)
            warmup = np.maximum(0.0,
                                (w_steps - step.astype(np.float32)) / w_steps)
            # low is the minimum number of layers to *not* skip, from n_layers to 0
            low = warmup * float(n_layers)
            # high should be so that (high - n_layers) / high = 1.0 - skip_fraction
            # because (high - n_layers) / high is the probability we're not skipping
            # (after warmup); so high - n_layers = high - high * skip_fraction
            high = float(n_layers) / self._skip_fraction
            # We want the same rng0 on all cores.
            if math.device_count() > 1:
                rng0 = math.psum(rng0, 'batch')
            n_forward_layers = random.uniform(rng0, (), np.float32, low, high)
        else:
            n_forward_layers = float(n_layers)
        # Run layers skipping after a certain number.
        cur_layer_idx = 0.0
        for layer, p, s, rng in zip(self.sublayers, weights, layers_state,
                                    rngs):
            inputs = _inputs_from_stack(layer, stack)
            outputs, s = math.cond(  # Skip (do identity) if > n_forward_layers.
                pred=(math.lt(cur_layer_idx, n_forward_layers)),
                true_operand=(inputs, p, s, rng),  # This tuple is t below.
                true_fun=(lambda t: layer.pure_fn(t[0], t[1], t[2], t[3])),  # pylint: disable=cell-var-from-loop
                false_operand=(inputs, p, s, rng),
                false_fun=(lambda t: (t[0], t[2])),  # return (inputs, state)
            )
            stack = _outputs_onto_stack(layer, outputs, stack)
            new_state.append(s)
            cur_layer_idx += 1.0
        return stack, (step + 1, new_state)
コード例 #2
0
ファイル: reformer.py プロジェクト: rouniuyizu/trax
 def forward_with_state(self, inputs, weights=(), state=(), rng=None):
   if self._n_sections == 1:
     results = self._layer(inputs, weights=weights, state=state, rng=rng)
   else:
     rngs = _split_rngs(rng, len(inputs))
     results = [self._layer(x, weights=weights, state=state, rng=r)
                for x, r in zip(inputs, rngs)]
     results = tuple(results)
   # TODO(kitaev): think about how to merge state across copies in the map.
   return results, self._layer.state
コード例 #3
0
ファイル: reformer.py プロジェクト: ajiangcn/trax
  def forward(self, xs):
    rngs = _split_rngs(self.rng, len(self.sublayers))
    accumulator, *context = xs
    stack = context = tuple(context)
    new_state = []
    for layer, w, s, rng in zip(self.sublayers, self.weights, self.state, rngs):
      inputs = _inputs_from_stack(layer, stack)
      outputs, s = layer.pure_fn(inputs, w, s, rng)
      stack = _outputs_onto_stack(layer, outputs, stack)
      new_state.append(s)
    residual = stack[0] if isinstance(stack, (tuple, list)) else stack

    output = accumulator + residual
    stack = (output,) + context
    self.state = tuple(new_state)
    return stack
コード例 #4
0
ファイル: reformer.py プロジェクト: rouniuyizu/trax
  def forward_with_state(self, xs, weights=base.EMPTY_WEIGHTS,
                         state=base.EMPTY_STATE, rng=None):
    rngs = _split_rngs(rng, len(self.sublayers))

    accumulator, *context = xs
    stack = context = tuple(context)
    new_state = []
    for layer, w, s, rng in zip(self.sublayers, weights, state, rngs):
      inputs = _inputs_from_stack(layer, stack)
      outputs, s = layer.pure_fn(inputs, w, s, rng)
      stack = _outputs_onto_stack(layer, outputs, stack)
      new_state.append(s)
    residual = stack[0] if isinstance(stack, (tuple, list)) else stack

    output = accumulator + residual
    stack = (output,) + context
    return stack, new_state
コード例 #5
0
ファイル: reformer.py プロジェクト: ajiangcn/trax
  def reverse_and_grad(self, output, ct, weights=(), state=(), new_state=(),
                       rng=None):
    rngs = _split_rngs(rng, len(self.sublayers))

    accumulator_output, *context = output
    context = tuple(context)
    accumulator_output_ct, *context_ct = ct
    context_ct = tuple(context_ct)

    # Forward pass through self.compute_residual. Outputs that will not receive
    # a gradient signal from subsequent layers are moved to aux.
    def call_compute_residual(x, weights):
      res, _ = self.compute_residual.pure_fn(
          x, weights=weights, state=state[0], rng=rngs[0])
      if not isinstance(res, (tuple, list)):
        return res, None
      else:
        n_differentiable = 1
        if self.attention_layer is not None:
          n_differentiable = min(len(res), self.attention_layer.n_in)
        return res[:n_differentiable], res[n_differentiable:]

    stack = context
    inputs = _inputs_from_stack(self.compute_residual, stack)
    outputs, compute_residual_vjpfun, outputs_aux = fastmath.vjp(
        call_compute_residual, inputs, weights[0], has_aux=True)
    if outputs_aux is not None:
      n_differentiable_outputs = len(outputs)
      outputs = outputs + outputs_aux
    stack = _outputs_onto_stack(self.compute_residual, outputs, stack)

    stack_ct = accumulator_output_ct
    if self.attention_layer is None:
      residual = stack[0] if isinstance(stack, (tuple, list)) else stack
    else:
      inputs = _inputs_from_stack(self.attention_layer, stack)
      (residual, _, attn_inputs_ct, attn_weights_ct
      ) = self.attention_layer.forward_and_or_backward(
          inputs, weights[1], new_state[1], rngs[1],
          output_grad=accumulator_output_ct,
          compute_output=True, update_state=False)
      stack_ct = _outputs_onto_stack(
          self.attention_layer, attn_inputs_ct, stack_ct,
          self.attention_layer.n_out, self.attention_layer.n_in)

    compute_residual_ct = _inputs_from_stack(
        self.compute_residual, stack_ct, self.compute_residual.n_out)
    if outputs_aux is not None:
      if not isinstance(compute_residual_ct, (tuple, list)):
        compute_residual_ct = (compute_residual_ct,)
      compute_residual_ct = compute_residual_ct[:n_differentiable_outputs]
      assert len(compute_residual_ct) == n_differentiable_outputs
    (compute_residual_inputs_ct, compute_residual_weights_ct
    ) = compute_residual_vjpfun(compute_residual_ct)
    stack_ct = _outputs_onto_stack(
        self.compute_residual, compute_residual_inputs_ct, stack_ct,
        self.compute_residual.n_out, self.compute_residual.n_in)
    if not isinstance(stack_ct, (tuple, list)):
      stack_ct = (stack_ct,)
    stack_ct = (accumulator_output_ct,) + fastmath.nested_map_multiarg(
        lambda x, y: x+y, context_ct[:len(stack_ct)], stack_ct
        ) + context_ct[len(stack_ct):]

    reconstructed_x = accumulator_output - residual
    stack = (reconstructed_x,) + context
    if self.attention_layer is None:
      weights_ct = (compute_residual_weights_ct,)
    else:
      weights_ct = (compute_residual_weights_ct, attn_weights_ct)
    return stack, (stack_ct, weights_ct)