コード例 #1
0
ファイル: sparsity_test.py プロジェクト: DavidTingley/trax
 def test_reversible_permute(self):
     layer = sparsity.ReversibleReshapePermute()
     x = np.array([[1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7]])
     layer.init(shapes.signature(x))
     ys = layer(x)
     self.assertEqual(tl.to_list(ys),
                      [[1, 3, 5, 7, 2, 4, 6, 8], [0, 2, 4, 6, 1, 3, 5, 7]])
     rev_x = layer.reverse(ys, weights=layer.weights)
     self.assertEqual(tl.to_list(x), tl.to_list(rev_x))
コード例 #2
0
 def test_from_file(self):
   params = np.array([[0.0, 0.1], [0.2, 0.3], [0.4, 0.5]])
   # `create_tempfile` needs access to --test_tmpdir, however in the OSS world
   # pytest doesn't run `absltest.main`, so we need to manually parse the flags
   test_utils.ensure_flag('test_tmpdir')
   filename = self.create_tempfile('params.npy').full_path
   with open(filename, 'wb') as f:
     np.save(f, params)
   f = tl.InitializerFromFile(filename)
   init_value = f(params.shape, rng())
   self.assertEqual(tl.to_list(init_value), tl.to_list(params))
コード例 #3
0
    def test_padding_same(self):
        layer = tl.SumPool(pool_size=(3, ), strides=(3, ), padding='SAME')

        # One padding position needed; add at end.
        x = np.array([[[0, 9], [1, 8], [2, 7], [3, 6], [4, 5]]])
        y = layer(x)
        self.assertEqual(tl.to_list(y), [[[3, 24], [7, 11]]])

        # Two padding positions needed; add one at end and one at start.
        x = np.array([[[0, 9], [1, 8], [2, 7], [3, 6]]])
        y = layer(x)
        self.assertEqual(tl.to_list(y), [[[1, 17], [5, 13]]])
コード例 #4
0
 def test_one_hot(self):
     targets = np.array([2, 0, 1])
     n_categories = 5
     target_distributions = tl.one_hot(targets, n_categories)
     self.assertEqual(
         tl.to_list(target_distributions),
         [[0., 0., 1., 0., 0.], [1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.]])
コード例 #5
0
ファイル: rel_attention_test.py プロジェクト: ravis3011/trax
    def test_shift_right_cls(self):
        layer = ra.ShiftRightCls(5)
        x = np.array([[1, 2, 3, 4]])
        _, _ = layer.init(shapes.signature(x))
        y = layer(x)

        self.assertEqual(tl.to_list(y), [[5, 1, 2, 3]])
コード例 #6
0
    def test_padding_default(self):
        layer = tl.MaxPool(pool_size=(3, ), strides=(3, ))

        # Discard incomplete window at end: [[3, 6], [4, 5]].
        x = np.array([[[0, 9], [1, 8], [2, 7], [3, 6], [4, 5]]])
        y = layer(x)
        self.assertEqual(tl.to_list(y), [[[2, 9]]])
コード例 #7
0
ファイル: rel_attention_test.py プロジェクト: ravis3011/trax
 def test_create_mask_layer(self):
     layer = ra.CreateAttentionMaskLayer()
     xs = _get_xs(q=2, k=2)
     layer.init(shapes.signature(xs))
     _, _, _, mask = layer(xs)
     self.assertEqual(mask.shape, (1, 1, 2, 2))
     np.testing.assert_equal(tl.to_list(mask),
                             [[[[True, False], [True, True]]]])
コード例 #8
0
ファイル: rel_attention_test.py プロジェクト: rohan-viz/trax
 def test_create_mask_layer(self):
     layer = ra.AttentionMaskLayer()
     xs = np.zeros((1, 2, 5))
     layer.init(shapes.signature(xs))
     mask = layer(xs)
     self.assertEqual(mask.shape, (2, 2))
     np.testing.assert_equal(tl.to_list(mask),
                             [[True, False], [True, True]])
コード例 #9
0
 def test_forward(self):
     layer = tl.AvgPool(pool_size=(2, 2), strides=(2, 2))
     x = np.array([[
         [[1, 2, 3], [4, 5, 6], [10, 20, 30], [40, 50, 60]],
         [[4, 2, 3], [7, 1, 2], [40, 20, 30], [70, 10, 20]],
     ]])
     y = layer(x)
     self.assertEqual(tl.to_list(y), [[[[4.0, 2.5, 3.5], [40, 25, 35]]]])
コード例 #10
0
ファイル: rel_attention_test.py プロジェクト: ravis3011/trax
    def test_fast_shift_matrix_funnel_2(self):
        layer = ra._fast_matrix_shift
        x = np.array([[[[-3., -2., -1., 0., 1., 2., 3.],
                        [-3., -2., -1., 0., 1., 2., 3.]]]]).astype(np.float32)

        y = layer(x, funnel_factor=2, is_upsampling=False)
        self.assertEqual(y.dtype, np.float32)
        self.assertEqual(tl.to_list(y),
                         [[[[0., 1., 2., 3.], [-2., -1., 0., 1.]]]])
コード例 #11
0
ファイル: rel_attention_test.py プロジェクト: rohan-viz/trax
    def test_fast_shift_matrix(self):
        layer = ra._fast_matrix_shift
        x = np.array([[[[-3., -2., -1., 0.], [-3., -2., -1., 0.],
                        [-3., -2., -1., 0.], [-3., -2., -1.,
                                              0.]]]]).astype(np.float32)

        y = layer(x)
        self.assertEqual(y.dtype, np.float32)
        self.assertEqual(tl.to_list(y),
                         [[[[0., 0., -3., -2.], [-1., 0., 0., -3.],
                            [-2., -1., 0., 0.], [-3., -2., -1., 0.]]]])
コード例 #12
0
ファイル: attention_test.py プロジェクト: wbh-lab/trax
 def test_shift_right(self):
     # Test shifts right on axis=1
     layer = tl.ShiftRight()
     x = np.array([[[9, 9, 9], [8, 8, 8], [7, 7, 7], [6, 6, 6]],
                   [[99, 98, 97], [96, 95, 94], [93, 92, 91], [90, 89,
                                                               88]]])
     y = layer(x)
     self.assertEqual(x.shape, y.shape)
     self.assertEqual(
         tl.to_list(y),
         [[[0, 0, 0], [9, 9, 9], [8, 8, 8], [7, 7, 7]],
          [[0, 0, 0], [99, 98, 97], [96, 95, 94], [93, 92, 91]]])
コード例 #13
0
ファイル: rel_attention_test.py プロジェクト: rohan-viz/trax
    def test_create_mask_layer_predict(self):
        layer = ra.AttentionMaskLayer(total_kv_pooling=2,
                                      n_raw_tokens_generated=1,
                                      max_inference_length=3,
                                      mode='predict')
        xs = np.zeros((1, 1, 5))
        layer.init(shapes.signature(xs))

        for _ in range(2):
            mask = layer(xs)
            self.assertEqual(mask.shape, (1, 3))
            np.testing.assert_equal(tl.to_list(mask), [[True, False, False]])

        for _ in range(2):
            mask = layer(xs)
            self.assertEqual(mask.shape, (1, 3))
            np.testing.assert_equal(tl.to_list(mask), [[True, True, False]])

        for _ in range(2):
            mask = layer(xs)
            self.assertEqual(mask.shape, (1, 3))
            np.testing.assert_equal(tl.to_list(mask), [[True, True, True]])
コード例 #14
0
ファイル: sparsity_test.py プロジェクト: ivantha/trax
  def test_reversible_permute(self):
    layer = sparsity.ReversibleRandomPermute()
    x = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
                  [0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11, 12, 13],
                  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
                  ])
    layer.init(shapes.signature(x))
    ys = layer(x)
    # this assert will fail once per ~87B runs, but it's okay
    self.assertNotEqual(tl.to_list(ys), tl.to_list(x))

    self.assertEqual(tl.to_list(ys[0]), tl.to_list(ys[2]))
    self.assertNotEqual(tl.to_list(ys[0]), tl.to_list(ys[1]))
    rev_x = layer.reverse(ys, weights=layer.weights)
    self.assertEqual(tl.to_list(x), tl.to_list(rev_x))
コード例 #15
0
ファイル: attention_test.py プロジェクト: wbh-lab/trax
    def test_shift_right_float(self):
        layer = tl.ShiftRight()
        x = np.array([[[9, 9, 9], [8, 8, 8], [7, 7, 7], [6, 6, 6]],
                      [[99, 98, 97], [96, 95, 94], [93, 92, 91],
                       [90, 89, 88]]]).astype(np.float32)
        x /= 2.0
        self.assertEqual(x.dtype, np.float32)

        y = layer(x)
        self.assertEqual(y.dtype, np.float32)
        self.assertEqual(tl.to_list(y),
                         [[[0.0, 0.0, 0.0], [4.5, 4.5, 4.5], [4.0, 4.0, 4.0],
                           [3.5, 3.5, 3.5]],
                          [[0.0, 0.0, 0.0], [49.5, 49.0, 48.5],
                           [48.0, 47.5, 47.0], [46.5, 46.0, 45.5]]])
コード例 #16
0
 def test_reversible_swap(self):
     layer = tl.ReversibleSwap()
     xs = [np.array([1, 2]), np.array([10, 20])]
     ys = layer(xs)
     self.assertEqual(tl.to_list(ys), [[10, 20], [1, 2]])
コード例 #17
0
 def test_reversible_swap(self, backend):
     with fastmath.use_backend(backend):
         layer = tl.ReversibleSwap()
         xs = [np.array([1, 2]), np.array([10, 20])]
         ys = layer(xs)
         self.assertEqual(tl.to_list(ys), [[10, 20], [1, 2]])
コード例 #18
0
ファイル: activation_fns_test.py プロジェクト: zhaoqiuye/trax
 def test_relu(self):
     layer = tl.Relu()
     x = np.array([-2.0, -1.0, 0.0, 2.0, 3.0, 5.0])
     y = layer(x)
     self.assertEqual(tl.to_list(y), [0.0, 0.0, 0.0, 2.0, 3.0, 5.0])
コード例 #19
0
ファイル: activation_fns_test.py プロジェクト: zhaoqiuye/trax
 def test_parametric_relu(self):
     layer = tl.ParametricRelu(a=.25)
     x = np.array([-2.0, -1.0, 0.0, 2.0, 3.0, 5.0])
     y = layer(x)
     self.assertEqual(tl.to_list(y), [0.0, 0.0, 0.0, .5, .75, 1.25])
コード例 #20
0
ファイル: activation_fns_test.py プロジェクト: zhaoqiuye/trax
 def test_hard_tanh(self):
     layer = tl.HardTanh()
     x = np.array([-1.5, -.5, -.25, 0.0, .25, .5, 1.5])
     y = layer(x)
     self.assertEqual(tl.to_list(y), [-1.0, -.5, -.25, 0.0, .25, .5, 1.0])
コード例 #21
0
ファイル: activation_fns_test.py プロジェクト: zhaoqiuye/trax
 def test_hard_sigmoid(self):
     layer = tl.HardSigmoid()
     x = np.array([-1.5, -.5, -.25, 0.0, .25, .5, 1.5])
     y = layer(x)
     self.assertEqual(tl.to_list(y), [0.0, 0.5, 0.75, 1.0, 1.0, 1.0, 1.0])
コード例 #22
0
ファイル: activation_fns_test.py プロジェクト: zhaoqiuye/trax
 def test_leaky_relu(self):
     layer = tl.LeakyRelu(a=.125)
     x = np.array([-2.0, -1.0, 0.0, 2.0, 3.0, 5.0])
     y = layer(x)
     self.assertEqual(tl.to_list(y), [-.25, -.125, 0.0, 2.0, 3.0, 5.0])