def reshape(a, newshape): """Reshapes an array. Args: a: array_like. Could be an ndarray, a Tensor or any object that can be converted to a Tensor using `tf.convert_to_tensor`. newshape: 0-d or 1-d array_like. Returns: An ndarray with the contents and dtype of `a` and shape `newshape`. """ a = array_creation.asarray(a) if isinstance(newshape, arrays.ndarray): newshape = utils.get_shape_from_ndarray(newshape) return utils.tensor_to_ndarray(tf.reshape(a.data, newshape))
def zeros(shape, dtype=float): """Returns an ndarray with the given shape and type filled with zeros. Args: shape: A fully defined shape. Could be - NumPy array or a python scalar, list or tuple of integers, - TensorFlow tensor/ndarray of integer type and rank <=1. dtype: Optional, defaults to float. The type of the resulting ndarray. Could be a python type, a NumPy type or a TensorFlow `DType`. Returns: An ndarray. """ if dtype: dtype = utils.to_tf_type(dtype) if isinstance(shape, arrays.ndarray): shape = utils.get_shape_from_ndarray(shape) return utils.tensor_to_ndarray(tf.zeros(shape, dtype=dtype))