コード例 #1
0
def main():
    columns, x_train, y_train, x_test, y_test = preprocessing()
    random_forest_ID3 = RandomForest(columns[:-1], ['age', 'hours-per-week', 'capital-gain', 'capital-loss'],
                                                                  Criterion.ID3, np.vstack((x_train, x_test)), 10)
    decision_tree_ID3 = DecisionTreeClassifier(columns[:-1], ['age', 'hours-per-week', 'capital-gain', 'capital-loss'],
                                                             Criterion.ID3)

    random_forest_GINI = RandomForest(columns[:-1], ['age', 'hours-per-week', 'capital-gain', 'capital-loss'],
                                                                  Criterion.GINI, np.vstack((x_train, x_test)), 10)
    decision_tree_GINI = DecisionTreeClassifier(columns[:-1], ['age', 'hours-per-week', 'capital-gain', 'capital-loss'],
                                                             Criterion.GINI)
    decision_tree_ID3.set_attribute_values(np.vstack((x_train, x_test)))
    decision_tree_GINI.set_attribute_values(np.vstack((x_train, x_test)))
    validation = Validation(x_train, y_train, x_test, y_test)

    print('K-fold validation:\n\n')
    print('Criteri ID3:\n')
    print('Random forest:\n')
    score = validation.score_cross_val(3, random_forest_ID3)
    print(f'Accuracy mitjana: {np.array(score[Measure.ACC]).mean()}\n')
    print(f'Specificity mitjana: {np.array(score[Measure.SPEC]).mean()}\n')


    print('Decision tree:\n')
    score = validation.score_cross_val(3, decision_tree_ID3)
    print(f'Accuracy mitjana: {np.array(score[Measure.ACC]).mean()}\n')
    print(f'Specificity mitjana: {np.array(score[Measure.SPEC]).mean()}\n')

    print('Criteri GINI:\n')
    print('Random forest:\n')
    score = validation.score_cross_val(3, random_forest_GINI)
    print(f'Accuracy mitjana: {np.array(score[Measure.ACC]).mean()}\n')
    print(f'Specificity mitjana: {np.array(score[Measure.SPEC]).mean()}\n')


    print('Decision tree:\n')
    score = validation.score_cross_val(3, decision_tree_GINI)
    print(f'Accuracy mitjana: {np.array(score[Measure.ACC]).mean()}\n')
    print(f'Specificity mitjana: {np.array(score[Measure.SPEC]).mean()}\n')

    print('Final model: Random Forest\n')
    print('Resultats finals: \n')
    final_measure = validation.final_measure(random_forest_ID3)
    print(f'Accuracy mitjana: {np.array(final_measure[Measure.ACC]).mean()}\n')
    print(f'Specificity mitjana: {np.array(final_measure[Measure.SPEC]).mean()}\n')


    print('\n\n Exemple d arbre de decisió entrenat amb totes les dades disponible a out/resultat.txt')
    #Imprimim un arbre de decisió entrenat amb totes les dades, per visualitzar, tot i no ser el millor model
    x_data = np.vstack((x_train, x_test))
    y_data = np.hstack((y_train, y_test))
    decision_tree_ID3.fit(x_data, y_data)
    write_to_file(decision_tree_ID3)
コード例 #2
0
class TestCases(unittest.TestCase):
    '''
    El següent conjunt de tests està basat en l'exercici 4 de problemes,
    en el que s'ha calculat un arbre de decisió (amb criteri de selecció ID3) a mà
    '''
    def setUp(self):
        data = [['Si', 'No', 'No', 'No'], ['Si', 'No', 'Si', 'No'],
                ['No', 'No', 'No', 'Si'], ['No', 'No', 'Si', 'No'],
                ['No', 'Si', 'Si', 'Si']]
        self.df = pd.DataFrame(
            data,
            columns=['Operacio major', 'Familia', 'Gran', 'Enviar a casa'])
        self.tree = DecisionTreeClassifier(self.df.columns[:-1], [],
                                           Criterion.ID3)
        self.tree.set_attribute_values(self.df.to_numpy()[:, 0:3])

        data_nan = [['Si', 'No', 'No', 'No'], ['?', 'No', 'Si', 'No'],
                    ['No', 'No', 'No', 'Si'], ['No', 'No', '?', 'No'],
                    ['No', 'Si', '?', 'Si']]
        self.df_nan = pd.DataFrame(
            data_nan,
            columns=['Operacio major', 'Familia', 'Gran', 'Enviar a casa'])
        '''Exemple vist a la diapositiva 76 de teoria (decision trees),  forçem l'arbre que surt en la diapositiva,
        ja que sabem (manualment) que haurien de donar en aquest arbre les prediccioins dels atributs [?, c2], [?, ?]
        '''
        data_2 = [['b1', 'c2', 'Yes'], ['b1', 'c2',
                                        'Yes'], ['b1', 'c2', 'Yes'],
                  ['b1', 'c2', 'Yes'], ['b2', 'c1', 'Yes'],
                  ['b2', 'c1', 'Yes'], ['b2', 'c1', 'Yes'], ['b2', 'c2', 'No'],
                  ['b2', 'c2', 'No'], ['b2', 'c2', 'No'], ['b2', 'c2', 'No'],
                  ['b2', 'c2', 'No']]
        self.df2 = pd.DataFrame(data_2, columns=['A', 'B', 'Objectiu'])
        self.tree2 = DecisionTreeClassifier(self.df2.columns[:-1], [],
                                            Criterion.ID3)
        self.tree2.set_attribute_values(self.df2.to_numpy()[:, 0:2])

    def test_entropy(self):
        s = self.df.values[:, 3]
        A = self.df.values[:, 0:3]
        entrpy = entropy(s)
        entrpy_cond = []
        for a in A.T:
            entrpy_cond.append(entropy_cond(s, a))

        expected_entrpy = -3 / 5 * log(3 / 5, 2) - 2 / 5 * log(2 / 5, 2)
        expected_entrpy_cond = []
        expected_entrpy_cond.append(
            3 / 5 *
            (-1 / 3 * log(1 / 3, 2) - 2 / 3 * log(2 / 3, 2)))  #operacio major
        expected_entrpy_cond.append(
            4 / 5 * (-3 / 4 * log(3 / 4, 2) - 1 / 4 * log(1 / 4, 2)))  #familia
        expected_entrpy_cond.append(
            2 / 5 * (-1 / 2 * log(1 / 2, 2) - 1 / 2 * log(1 / 2, 2)) + 3 / 5 *
            (-2 / 3 * log(2 / 3, 2) - 1 / 3 * log(1 / 3, 2)))  # gran

        self.assertTrue(entrpy == expected_entrpy)
        for i in range(3):
            self.assertTrue(entrpy_cond[i] == expected_entrpy_cond[i])

    def test_gini(self):
        s = self.df.values[:, 3]
        A = self.df.values[:, 0:3]
        gin = gini(s)
        gin_gain = []
        for a in A.T:
            gin_gain.append(gini_gain(s, a))

        expected_gini = 1 - 3 / 5 * 3 / 5 - 2 / 5 * 2 / 5
        expected_gini_gain = []
        expected_gini_gain.append(
            expected_gini - 3 / 5 *
            (1 - 1 / 3 * 1 / 3 - 2 / 3 * 2 / 3))  #operacio major
        expected_gini_gain.append(
            expected_gini - 4 / 5 *
            (1 - 3 / 4 * 3 / 4 - 1 / 4 * 1 / 4))  #familia
        expected_gini_gain.append(expected_gini - 2 / 5 *
                                  (1 - 1 / 2 * 1 / 2 - 1 / 2 * 1 / 2) - 3 / 5 *
                                  (1 - 2 / 3 * 2 / 3 - 1 / 3 * 1 / 3))  # gran

        self.assertTrue(gin == expected_gini)
        for i in range(3):
            self.assertTrue(gin_gain[i] == expected_gini_gain[i])

    def test_tree(self):
        self.tree.fit(self.df.values[:, 0:3], self.df.values[:, 3])
        node0 = self.tree.model
        self.assertTrue(type(node0) == SubTree)

        node1 = node0.child_nodes['No']
        node2 = node0.child_nodes['Si']
        self.assertTrue(type(node1) == SubTree)

        node3 = node1.child_nodes['No']
        node4 = node1.child_nodes['Si']
        self.assertTrue(type(node3) == SubTree)

        node5 = node3.child_nodes['No']
        node6 = node3.child_nodes['Si']
        self.assertTrue(type(node2) != SubTree)
        self.assertTrue(type(node4) != SubTree)
        self.assertTrue(type(node5) != SubTree)
        self.assertTrue(type(node6) != SubTree)

        #decision nodes
        self.assertTrue(node0.A_header[node0.attribute] == 'Operacio major')
        self.assertTrue(node1.A_header[node1.attribute] == 'Familia')
        self.assertTrue(node3.A_header[node3.attribute] == 'Gran')

        #leaves
        self.assertTrue(node2 == 'No')
        self.assertTrue(node4 == 'Si')
        self.assertTrue(node5 == 'Si')
        self.assertTrue(node6 == 'No')

    def test_predict(self):
        self.tree.fit(self.df.values[:, 0:3], self.df.values[:, 3])
        test = pd.DataFrame(
            [['No', 'No', 'No'], ['No', 'No', 'Si'], ['No', 'Si', 'No'],
             ['No', 'Si', 'Si'], ['Si', 'No', 'No'], ['Si', 'No', 'Si'],
             ['Si', 'Si', 'No'], ['Si', 'Si', 'Si']],
            columns=['Operacio major', 'Familia', 'Gran']).to_numpy()
        output = self.tree.predict(test).tolist()
        expected_output = ['Si', 'No', 'Si', 'Si', 'No', 'No', 'No', 'No']

        self.assertListEqual(output, expected_output)

    def test_nan_gain_entropy(self):
        s = self.df_nan.values[:, 3]
        A = self.df_nan.values[:, 0:3]

        gain_output = []
        for a in A.T:
            gain_output.append(gain(s, a))

        expected_entrpy = -3 / 5 * log(3 / 5, 2) - 2 / 5 * log(2 / 5, 2)
        expected_gain = []
        expected_gain.append(4 / 5 *
                             (expected_entrpy - 3 / 4 *
                              (-1 / 3 * log(1 / 3, 2) - 2 / 3 * log(2 / 3, 2)))
                             )  # operacio major
        expected_gain.append(
            expected_entrpy - 4 / 5 *
            (-3 / 4 * log(3 / 4, 2) - 1 / 4 * log(1 / 4, 2)))  # familia
        expected_gain.append(
            3 / 5 * (expected_entrpy - 2 / 3 *
                     (-1 / 2 * log(1 / 2, 2) - 1 / 2 * log(1 / 2, 2))))  # gran

        for i in range(3):
            self.assertTrue(gain_output[i] == expected_gain[i])

    def test_gini_nan(self):
        s = self.df_nan.values[:, 3]
        A = self.df_nan.values[:, 0:3]
        gin = gini(s)
        gin_gain = []
        for a in A.T:
            gin_gain.append(gini_gain(s, a))

        expected_gini = 1 - 3 / 5 * 3 / 5 - 2 / 5 * 2 / 5
        expected_gini_gain = []
        expected_gini_gain.append(
            4 / 5 * (expected_gini - 3 / 4 *
                     (1 - 1 / 3 * 1 / 3 - 2 / 3 * 2 / 3)))  #operacio major
        expected_gini_gain.append(
            expected_gini - 4 / 5 *
            (1 - 3 / 4 * 3 / 4 - 1 / 4 * 1 / 4))  #familia
        expected_gini_gain.append(
            3 / 5 * (expected_gini - 2 / 3 *
                     (1 - 1 / 2 * 1 / 2 - 1 / 2 * 1 / 2)))  # gran

        self.assertTrue(gin == expected_gini)
        for i in range(3):
            self.assertTrue(gin_gain[i] == expected_gini_gain[i])

    def test_predict_nan(self):
        self.tree2.fit(self.df2.values[:, 0:2], self.df2.values[:, 2])
        test = pd.DataFrame([['?', 'c2'], ['?', '?']],
                            columns=['B', 'C']).to_numpy()
        output = self.tree2.predict(test).tolist()
        expected_output = ['No', 'Yes']

        probabilities1 = self.tree2.model.predict_nan_value(['?', 'c2'])
        probabilities2 = self.tree2.model.predict_nan_value(['?', '?'])

        expected_probabilities1 = 8 / 12, 4 / 12
        expected_probabilities2 = (8 / 12) * (5 / 8), (4 / 12 + (8 / 12) *
                                                       (3 / 8))

        self.assertListEqual(output, expected_output)
        self.assertTupleEqual(probabilities1, expected_probabilities1)
        self.assertTrue(
            abs(probabilities2[0] - expected_probabilities2[0]) <
            1E-15)  #truncation error
        self.assertEqual(probabilities2[1], probabilities2[1])