コード例 #1
0
    def insert(self, key: int) -> bool:
        if self.__root is None:
            self.__root = Node(key)
            return True

        current = self.__root

        while True:
            if current.key == key:
                # node has same key does not allowed in BTS.
                return False

            parent = current

            # happened when the new key is smaller than the root of a sub-tree.
            should_go_left = current.key > key

            if should_go_left:
                current = current.left
            else:
                current = current.right

            if current is None:
                new_node = Node(key, parent)

                if should_go_left:
                    parent.left = new_node
                else:
                    parent.right = new_node

                self.__re_balance(parent)
                break

        return True
コード例 #2
0
 def _insert(self, key, value, currentNode):
     """Insert helper method."""
     if key < currentNode.key:
         if currentNode.hasLeftChild():
             self._insert(key, value, currentNode.leftChild)
         else:
             currentNode.leftChild = Node(key, value, parent=currentNode)
     else:
         if currentNode.hasRightChild():
             self._insert(key, value, currentNode.rightChild)
         else:
             currentNode.rightChild = Node(key, value, parent=currentNode)
コード例 #3
0
 def insert(self, key, value):
     """Insert a new node into tree."""
     if self.root:
         self._insert(key, value, self.root)
     else:
         self.root = Node(key, value)
     self.size += 1
コード例 #4
0
def make_node_queue(nList):
    queue = []
    for cell in nList:
        print(str(cell[0]) + " " + str(cell[1]))
        n = Node(cell[0], cell[1])
        queue.append(n)
    return queue
コード例 #5
0
 def __init__(self, competitors):
     self.competitors = competitors
     self.actual_round_id = 0
     self.rounds = [
         Node(left_child=competitors[0], right_child=competitors[1])
         for i in range(2)
     ]
     self.final = None
     self.is_end = False
コード例 #6
0
def get_topn_nodes(tag_dict, parent_node):
    """Get top N nodes based on tag probabilities"""
    top_n = []
    dictsum = sum(tag_dict.values())
    for tag_pair in sorted(tag_dict.items(), key=itemgetter(1), reverse=True)[:config.TOPN]:
        new_node = Node(tag_pair[0], parent_node, tag_pair[1]/dictsum,
                        np.math.log(tag_pair[1]/dictsum, 10) + parent_node.cum_log_prob)
        top_n.append(new_node)
    return top_n
コード例 #7
0
def preorder_to_bst(l):
    if not l:
        return None

    ro = Node(l[0])
    ro.l = preorder_to_bst([e for e in l if e < l[0]])
    ro.r = preorder_to_bst([e for e in l if e > l[0]])

    return ro
コード例 #8
0
def main():
    root = Node(data=1)
    root = add_right(2, root)
    root.right = add_right(5, root.right)
    root.right.right = add_right(6, root.right.right)
    root.right.right = add_left(3, root.right.right)
    root.right.right.left = add_right(4, root.right.right.left)

    post_order(root)
    print()
コード例 #9
0
    def simulate(self):
        """
        Run G consecutive games (aka. episodes) of the self.game_type using fixed values for the game parameters:
        N and K for NIM, B_init for Ledge. When the G games have finished, your simulator must summarize the win-loss
        statistics. A typical summary (for G = 50) would be a simple statement such as: Player 1 wins 40 of 50 games
        (80%).
        """
        wins = 0  # Number of times player 1 wins

        # Actual games being played
        for episode in range(1, self.episodes + 1):
            logging.info("Episode: {}".format(episode))
            # The actual game being played this episode
            game = get_new_game(self.game_type,
                                self.game_config,
                                verbose=self.verbose)

            # For each game, a new Monte Carlo Search Tree is made
            mcts = MonteCarloSearchTree(self.game_type, self.game_config)
            state, player = game.get_current_state(), self.get_start_player()
            mcts.set_root(Node(state, None, player=player))

            # While the actual game is not finished
            while not game.is_winning_state():
                # Every time we shall select a new action, we perform M number of simulations in MCTS
                for _ in range(self.num_sim):
                    # One iteration of Monte Carlo Tree Search consists of four steps
                    # 1. Selection
                    leaf = mcts.selection()
                    # 2. Expand selected leaf node
                    sim_node = mcts.expansion(leaf)
                    # 3. Simulation
                    z = mcts.simulation(sim_node)
                    # 4. Backward propagation
                    mcts.backward(sim_node, z)

                # Now use the search tree to choose next action
                new_root = mcts.select_actual_action(player)

                # Perform this action, moving the game from state s -> s´
                game.perform_action(player, new_root.action)

                # Update player
                player = get_next_player(player)

                # Set new root of MCST
                mcts.set_root(new_root)

            # If next player is 2 and we are in a win state, player 1 got us in a win state
            if player == 2:
                wins += 1

        # Report statistics
        logging.info("Player1 wins {} of {} games ({}%)".format(
            wins, self.episodes, round(100 * (wins / self.episodes))))
コード例 #10
0
    def __insert(self, root, vti):

        if not root:
            return Node(vti)

        if vti <= root.value:
            root.left = self.__insert(root.left, vti)
        else:
            root.right = self.__insert(root.right, vti)

        return root
コード例 #11
0
 def get_child_nodes(self, state):
     """
     Given the state, return all child nodes possible
     :param state:
     :return:
     """
     legal_actions = self.game.get_legal_actions(state)
     new_states = [
         self.game.get_next_state(state, action) for action in legal_actions
     ]
     return [
         Node(state, action)
         for state, action in zip(new_states, legal_actions)
     ]
コード例 #12
0
    def _insert(self, val, node):
        """
		a basic recursive function for insertion:
		* insert a node at a leaf node that found by binary searching 
		  for the right place for the value.
		* doesn't maintain the balance of the tree
		"""
        if node == None:
            return Node(val, None, None)
        else:
            if node.val > val:
                node.left = self._insert(val, node.left)
            elif node.val < val:
                node.right = self._insert(val, node.right)
            return node
コード例 #13
0
def tree_dfs_builder(records, node_builder, children_splitter, max_depth,
                     curr_depth, child_id, continue_deepening):
    """
    Build a tree in a dfs manner.
    
    records - list of elements that we are working on a current level
    
    node_builder(records, curr_depth, child_id) - procedure that builds content of a node based on a subset of records
    
    children_splitter(records, curr_depth, child_id) - how to split the elements amongst the children
    
    max_depth - when this depth is reached, then stop building further depths
    
    curr_depth - current depth of a current node
    
    child_id - identifier, which lets node_builder and children_splitter distinguish the important data in the records that are being passed;
                it's up to the user how to use this information
    
    continue_deepening(child_id) - function that answers to a question whether a child_id should be further divided
    """

    PRINTER("[tree_dfs_builder]: depth: " + str(curr_depth) + " child_id: " +
            str(child_id))
    PRINTER("[tree_dfs_builder]: creating a root node...")
    node = Node()
    node.content = node_builder(records, curr_depth, child_id)
    #PRINTER("[tree_dfs_builder]: node.content"+str(node.content))

    #PRINTER("[tree_dfs_builder]: for each child of a child: "+str(child_id)+" "+str(continue_deepening(child_id)))
    if curr_depth == 0 or (curr_depth < max_depth
                           and continue_deepening(child_id)):
        PRINTER("[tree_dfs_builder]: splitting child data for child_id: " +
                str(child_id))
        child_data = children_splitter(records, curr_depth, child_id)
        #PRINTER("[tree_dfs_builder]: child_data"+str(child_data))
        node.children = {}
        #for each child=classification code on that level
        for child_id in child_data.iterkeys():
            #PRINTER("[tree_dfs_builder]: child_id"+child_id)
            node.children[child_id] = tree_dfs_builder(
                child_data[child_id], node_builder, children_splitter,
                max_depth, curr_depth + 1, child_id, continue_deepening)

    return node
コード例 #14
0
def main():
    tree = BinarySearchTree()
    """
    data = [7, 1, 2, 3, 4, 5, 6, 8]
    data = [1, 2, 5, 3, 6, 4]
    t = 6
    for i in range(t):
        x = data[i]
        tree.create(x)
    """
    tree.root = Node(1)
    tree.root.left = Node(2)
    tree.root.right = Node(3)
    tree.root.left.left = Node(4)
    tree.root.left.right = Node(5)
    tree.root.right.left = Node(6)
    tree.root.right.right = Node(7)
  
    top_view(tree.root)
コード例 #15
0
def build_tree(presentation):
    #init new tree
    huffmanT = HuffmanTree()
    #check if presentation length is even
    chars = presentation.keys()
    if len(chars) % 2 == 1:
        values = presentation.values()
        presentation[None] = max(values) + 1
    #sort the key by values
    sortedP = sort_dic(presentation)
    nodeQueue = make_node_queue(sortedP)
    while (1 < len(nodeQueue)):
        n1 = nodeQueue.pop()
        n2 = nodeQueue.pop()
        # print("lson " + str(n1.get_count()) + " rson " + str(n2.get_count()))
        father = Node("", 0, n1, n2)
        nodeQueue.append(father)
        # print("father " + str(father.get_count()))
        #sort queue
        sort_queue(nodeQueue)
    huffmanT.set_root(nodeQueue.pop())
    huffmanT.set_presentation(huffmanT.get_root())
    return huffmanT
コード例 #16
0
ファイル: traversal_postorder.py プロジェクト: lu9999/trees
    def has_next(self):
        if len(self.cache) > 0:
            return True
        else:
            return False

    def get_next(self):
        output_node = self.cache.pop()

        if output_node.left is not None:
            current_node = output_node.left
            self.cache.append(current_node)
            while current_node.right is not None:
                self.cache.append(current_node.right)
                current_node = current_node.right

        return output_node


node1 = Node(2)
node2 = Node(3)
node12 = Node(1, node1, node2)

node3 = Node(7)
node03 = Node(9, None, node3)

node_root = Node(6, node12, node03)

x = postorder(node_root)
while x.has_next():
    print x.get_next().value
コード例 #17
0
 def __init__(self, competitor1, competitor2):
     self.round = Node(left_child=competitor1, right_child=competitor2)
コード例 #18
0
 def fit(self, X, y, min_leaf = 5):
   self.dtree = Node(X, y, np.array(np.arange(len(y))), min_leaf)
   return self
コード例 #19
0
from typing import List
from tree_node import Node


class Solution:
    def __init__(self):
        self.result = []

    def preorder(self, root: Node) -> List[int]:
        if root is None:
            return
        self.result.append(root.val)
        if root.children is not None:
            for node in root.children:
                self.preorder(node)
        return self.result


if __name__ == '__main__':
    root = Node(val=1,
                children=[
                    Node(val=3,
                         children=[
                             Node(val=5, children=None),
                             Node(val=6, children=None)
                         ]),
                    Node(val=2, children=None),
                    Node(val=4, children=None)
                ])
    print(Solution().preorder(root=None))
コード例 #20
0
 def __init__(self, root_value=5):
     self.root = Node(root_value)
     self.node_count = 1
     self.level = 0
コード例 #21
0
# Declare all variables
TEST_FILE = sys.argv[1]
BOUNDARY_FILE = sys.argv[2]
MODEL_FILE = sys.argv[3]
SYS_OUTPUT = sys.argv[4]
config.BEAM_SIZE = int(sys.argv[5])
config.TOPN = int(sys.argv[6])
config.TOPK = int(sys.argv[7])
data = FileParser(TEST_FILE, BOUNDARY_FILE, MODEL_FILE)

# Beam search
for sent_idx in range(len(data.test_set)):
    total_paths = {}
    data.final_probs[sent_idx] = {}
    root = Node('BOS', None, None, 0)
    history = copy.deepcopy(data.test_set[sent_idx][0][1])
    tag1 = 'prevTwoTags=BOS+BOS'
    tag2 = 'prevT=BOS'

    base_weights = calc_base_weights(data.weights, data.tagset, history)
    tag_dict = calc_tag_probs(data.weights, base_weights, tag1, tag2)
    top_n = get_topn_nodes(tag_dict, root)
    pruned_nodes = prune_nodes(top_n, total_paths)
    data.final_probs[sent_idx][0] = get_class_label(pruned_nodes)

    for word_idx in range(1, data.sentence_lengths[sent_idx]):
        nodelist = []
        history = copy.deepcopy(data.test_set[sent_idx][word_idx][1])
        base_weights = calc_base_weights(data.weights, data.tagset, history)
        for node in total_paths[word_idx - 1]:
コード例 #22
0
height

"""

from tree_node import Node


# Get tree height
def get_height(root):
    if root is None:
        return 0

    left = get_height(root.left)
    right = get_height(root.right)

    return 1 + max(left, right)


if __name__ == '__main__':
    root = Node(10)
    root.left = Node(7)
    root.right = Node(8)
    root.left.left = Node(1)
    root.left.right = Node(3)
    root.right.left = Node(5)
    root.right.right = Node(7)
    root.left.left.left = Node(-1)
    root.left.right.right = Node(2)
    root.left.right.right.right = Node(4)
    print(get_height(root))