def load_from_file(self, tree_fname=None, virus_fname = None): if tree_fname is None: tree_fname = self.intermediate_tree_fname if os.path.isfile(tree_fname): self.tree = json_to_dendropy(read_json(tree_fname)) if virus_fname is None: virus_fname = self.clean_virus_fname if os.path.isfile(virus_fname): self.viruses = read_json(virus_fname) if os.path.isfile(self.frequency_fname): self.frequencies = read_json(self.frequency_fname)
def main(tree, viruses): from seq_util import json_to_Bio_alignment from tree_util import json_to_dendropy print "--- Ancestral inference at " + time.strftime("%H:%M:%S") + " ---" aln = json_to_Bio_alignment(viruses) print "--- Set-up ancestral inference at " + time.strftime("%H:%M:%S") + " ---" anc_seq = ancestral_sequences(tree, aln, seqtype='str') anc_seq.calc_ancestral_sequences() anc_seq.cleanup_tree() out_fname = "data/tree_ancestral.json" return json_to_dendropy(anc_seq.T.seed_node)
def test(params): from io_util import read_json from tree_util import json_to_dendropy, to_Biopython, color_BioTree_by_attribute from Bio import Phylo tree_fname = 'data/tree_refine_10y_50v.json' tree = json_to_dendropy(read_json(tree_fname)) fm = fitness_model(tree, predictors=params['predictors'], verbose=2) fm.predict(niter=params['niter']) #btree = to_Biopython(tree) #color_BioTree_by_attribute(btree, 'fitness') #Phylo.draw(btree, label_func=lambda x:'') return fm
def test(params): from io_util import read_json from tree_util import json_to_dendropy, to_Biopython, color_BioTree_by_attribute from Bio import Phylo tree_fname='data/tree_refine_10y_50v.json' tree = json_to_dendropy(read_json(tree_fname)) fm = fitness_model(tree, predictors = params['predictors'], verbose=2) fm.predict(niter = params['niter']) #btree = to_Biopython(tree) #color_BioTree_by_attribute(btree, 'fitness') #Phylo.draw(btree, label_func=lambda x:'') return fm
def test(): from Bio import Phylo tree = json_to_dendropy(read_json('auspice/tree.json')) print "calculate local branching index" T2 = get_average_T2(tree, 365) tau = T2 * 2**-4 print "avg pairwise distance:", T2 print "memory time scale:", tau calc_delta_LBI(tree, tau, datetime.datetime(2014, 1, 1)) bioTree = to_Biopython(tree) color_BioTree_by_attribute(bioTree, 'date') Phylo.draw(bioTree)
def main(): print "--- Tree LBI at " + time.strftime("%H:%M:%S") + " ---" tree = json_to_dendropy(read_json('data/tree_refine.json')) print "calculate local branching index" T2 = get_average_T2(tree, 365) tau = T2 * 2**-4 print "avg pairwise distance:", T2 print "memory time scale:", tau calc_LBI(tree, tau=tau) write_json(dendropy_to_json(tree.seed_node), "data/tree_LBI.json")
def main(params): import time from io_util import read_json from io_util import write_json from tree_util import json_to_dendropy, dendropy_to_json print "--- Start fitness model optimization at " + time.strftime("%H:%M:%S") + " ---" tree_fname = "data/tree_refine.json" tree = json_to_dendropy(read_json(tree_fname)) fm = fitness_model(tree, predictors=params["predictors"], verbose=1) fm.predict(niter=params["niter"]) out_fname = "data/tree_fitness.json" write_json(dendropy_to_json(tree.seed_node), out_fname) return out_fname
def main(params): import time from io_util import read_json from io_util import write_json from tree_util import json_to_dendropy, dendropy_to_json print "--- Start fitness model optimization at " + time.strftime("%H:%M:%S") + " ---" tree_fname='data/tree_refine.json' tree = json_to_dendropy(read_json(tree_fname)) fm = fitness_model(tree, predictors = params['predictors'], verbose=1) fm.predict(niter = params['niter']) out_fname = "tree_fitness.json" write_json(dendropy_to_json(tree.seed_node), out_fname) return out_fname
def main(in_fname='data/tree_refine.json', tree=True): print "--- Mutational tolerance at " + time.strftime("%H:%M:%S") + " ---" viruses = read_json(in_fname) if tree: viruses = json_to_dendropy(viruses) assign_fitness(viruses) if tree: out_fname = "data/tree_tolerance.json" write_json(dendropy_to_json(viruses.seed_node), out_fname) else: out_fname = "data/virus_tolerance.json" write_json(viruses, out_fname) return out_fname, viruses
def main(in_fname='tree_refine.json', tree=True): print "--- Mutational tolerance at " + time.strftime("%H:%M:%S") + " ---" viruses = read_json(in_fname) if tree: viruses = json_to_dendropy(viruses) assign_fitness(viruses) if tree: out_fname = "tree_tolerance.json" write_json(dendropy_to_json(viruses.seed_node), out_fname) else: out_fname = "virus_tolerance.json" write_json(viruses, out_fname) return out_fname, viruses
def main(tree_fname = 'data/tree_refine.json'): print "--- Testing predictor evaluations ---" tree = json_to_dendropy(read_json(tree_fname)) print "Calculating epitope distances" calc_epitope_distance(tree) print "Calculating nonepitope distances" calc_nonepitope_distance(tree) print "Calculating LBI" # calc_LBI(tree) print "Writing decorated tree" out_fname = "data/tree_predictors.json" write_json(dendropy_to_json(tree.seed_node), out_fname) return out_fname