コード例 #1
0
def test_skl_converter_regressor(tmpdir, clazz, toolchain):  # pylint: disable=too-many-locals
    """Convert scikit-learn regressor"""
    X, y = load_boston(return_X_y=True)
    kwargs = {}
    if clazz == GradientBoostingRegressor:
        kwargs['init'] = 'zero'
    clf = clazz(max_depth=3, random_state=0, n_estimators=10, **kwargs)
    clf.fit(X, y)
    expected_pred = clf.predict(X)

    model = treelite.sklearn.import_model(clf)
    assert model.num_feature == clf.n_features_
    assert model.num_output_group == 1
    assert model.num_tree == clf.n_estimators

    dtrain = treelite_runtime.DMatrix(X, dtype='float32')
    annotation_path = os.path.join(tmpdir, 'annotation.json')
    annotator = treelite.Annotator()
    annotator.annotate_branch(model=model, dmat=dtrain, verbose=True)
    annotator.save(path=annotation_path)

    libpath = os.path.join(tmpdir, 'skl' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={'annotate_in': annotation_path},
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath)
    assert predictor.num_feature == clf.n_features_
    assert model.num_output_group == 1
    assert predictor.pred_transform == 'identity'
    assert predictor.global_bias == 0.0
    assert predictor.sigmoid_alpha == 1.0
    out_pred = predictor.predict(dtrain)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
コード例 #2
0
ファイル: test_skl_importer.py プロジェクト: dmlc/treelite
def test_skl_converter_iforest(tmpdir, toolchain):  # pylint: disable=W0212
    # pylint: disable=too-many-locals
    """Convert scikit-learn regressor"""
    X = load_boston(return_X_y=True)[0]
    clf = IsolationForest(max_samples=64, random_state=0, n_estimators=10)
    clf.fit(X)
    expected_pred = clf._compute_chunked_score_samples(X)  # pylint: disable=W0212

    model = treelite.sklearn.import_model(clf)
    assert model.num_feature == clf.n_features_
    assert model.num_class == 1
    assert model.num_tree == clf.n_estimators

    dtrain = treelite_runtime.DMatrix(X, dtype='float32')
    annotation_path = os.path.join(tmpdir, 'annotation.json')
    annotator = treelite.Annotator()
    annotator.annotate_branch(model=model, dmat=dtrain, verbose=True)
    annotator.save(path=annotation_path)

    libpath = os.path.join(tmpdir, 'skl' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={'annotate_in': annotation_path},
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath)
    assert predictor.num_feature == clf.n_features_
    assert model.num_class == 1
    assert predictor.pred_transform == 'exponential_standard_ratio'
    assert predictor.global_bias == 0.0
    assert predictor.sigmoid_alpha == 1.0
    assert predictor.ratio_c > 0
    assert predictor.ratio_c < 64
    out_pred = predictor.predict(dtrain)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=2)
コード例 #3
0
ファイル: util.py プロジェクト: trowind/treelite
def check_predictor(predictor, dataset):
    """Check whether a predictor produces correct predictions for a given dataset"""
    dmat = treelite_runtime.DMatrix(dataset_db[dataset].dtest,
                                    dtype=dataset_db[dataset].dtype)
    out_margin = predictor.predict(dmat, pred_margin=True)
    out_prob = predictor.predict(dmat)
    check_predictor_output(dataset, dmat.shape, out_margin, out_prob)
コード例 #4
0
def test_sparse_ranking_model(tmpdir, quantize, toolchain):
    # pylint: disable=too-many-locals
    """Generate a LightGBM ranking model with highly sparse data.
    This example is inspired by https://github.com/dmlc/treelite/issues/222. It verifies that
    Treelite is able to accommodate the unique behavior of LightGBM when it comes to handling
    missing values.

    LightGBM offers two modes of handling missing values:

    1. Assign default direction per each test node: This is similar to how XGBoost handles missing
       values.
    2. Replace missing values with zeroes (0.0): This behavior is unique to LightGBM.

    The mode is controlled by the missing_value_to_zero_ field of each test node.

    This example is crafted so as to invoke the second mode of missing value handling.
    """
    rng = np.random.default_rng(seed=2020)
    X = scipy.sparse.random(m=10,
                            n=206947,
                            format='csr',
                            dtype=np.float64,
                            random_state=0,
                            density=0.0001)
    X.data = rng.standard_normal(size=X.data.shape[0], dtype=np.float64)
    y = rng.integers(low=0, high=5, size=X.shape[0])

    params = {
        'objective': 'lambdarank',
        'num_leaves': 32,
        'lambda_l1': 0.0,
        'lambda_l2': 0.0,
        'min_gain_to_split': 0.0,
        'learning_rate': 1.0,
        'min_data_in_leaf': 1
    }

    model_path = os.path.join(tmpdir, 'sparse_ranking_lightgbm.txt')
    libpath = os.path.join(tmpdir, 'sparse_ranking_lgb' + _libext())

    dtrain = lightgbm.Dataset(X, label=y, group=[X.shape[0]])

    bst = lightgbm.train(params, dtrain, num_boost_round=1)
    lgb_out = bst.predict(X)
    bst.save_model(model_path)

    model = treelite.Model.load(model_path, model_format='lightgbm')
    params = {'quantize': (1 if quantize else 0)}
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params=params,
                     verbose=True)

    predictor = treelite_runtime.Predictor(libpath, verbose=True)

    dmat = treelite_runtime.DMatrix(X)
    out = predictor.predict(dmat)

    np.testing.assert_almost_equal(out, lgb_out)
コード例 #5
0
def test_nonlinear_objective(tmpdir, objective, max_label,
                             expected_global_bias, toolchain, model_format):
    # pylint: disable=too-many-locals,too-many-arguments
    """Test non-linear objectives with dummy data"""
    np.random.seed(0)
    nrow = 16
    ncol = 8
    X = np.random.randn(nrow, ncol)
    y = np.random.randint(0, max_label, size=nrow)
    assert np.min(y) == 0
    assert np.max(y) == max_label - 1

    num_round = 4
    dtrain = xgboost.DMatrix(X, y)
    bst = xgboost.train({
        'objective': objective,
        'base_score': 0.5,
        'seed': 0
    },
                        dtrain=dtrain,
                        num_boost_round=num_round)

    objective_tag = objective.replace(':', '_')
    if model_format == 'json':
        model_name = f'nonlinear_{objective_tag}.json'
    else:
        model_name = f'nonlinear_{objective_tag}.bin'
    model_path = os.path.join(tmpdir, model_name)
    bst.save_model(model_path)

    model = treelite.Model.load(
        filename=model_path,
        model_format=('xgboost_json' if model_format == 'json' else 'xgboost'))
    assert model.num_feature == dtrain.num_col()
    assert model.num_output_group == 1
    assert model.num_tree == num_round
    libpath = os.path.join(tmpdir, objective_tag + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={},
                     verbose=True)

    expected_pred_transform = {
        'binary:logistic': 'sigmoid',
        'count:poisson': 'exponential'
    }

    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    assert predictor.num_feature == dtrain.num_col()
    assert predictor.num_output_group == 1
    assert predictor.pred_transform == expected_pred_transform[objective]
    np.testing.assert_almost_equal(predictor.global_bias,
                                   expected_global_bias,
                                   decimal=5)
    assert predictor.sigmoid_alpha == 1.0
    dmat = treelite_runtime.DMatrix(X, dtype='float32')
    out_pred = predictor.predict(dmat)
    expected_pred = bst.predict(dtrain)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
コード例 #6
0
def test_xgb_iris(tmpdir, toolchain, objective, model_format,
                  expected_pred_transform, num_parallel_tree):
    # pylint: disable=too-many-locals, too-many-arguments
    """Test Iris data (multi-class classification)"""
    X, y = load_iris(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        shuffle=False)
    dtrain = xgboost.DMatrix(X_train, label=y_train)
    dtest = xgboost.DMatrix(X_test, label=y_test)
    num_class = 3
    num_round = 10
    param = {
        'max_depth': 6,
        'eta': 0.05,
        'num_class': num_class,
        'verbosity': 0,
        'objective': objective,
        'metric': 'mlogloss',
        'num_parallel_tree': num_parallel_tree
    }
    bst = xgboost.train(param,
                        dtrain,
                        num_boost_round=num_round,
                        evals=[(dtrain, 'train'), (dtest, 'test')])

    if model_format == 'json':
        model_name = 'iris.json'
        model_path = os.path.join(tmpdir, model_name)
        bst.save_model(model_path)
        model = treelite.Model.load(filename=model_path,
                                    model_format='xgboost_json')
    else:
        model_name = 'iris.model'
        model_path = os.path.join(tmpdir, model_name)
        bst.save_model(model_path)
        model = treelite.Model.load(filename=model_path,
                                    model_format='xgboost')
    assert model.num_feature == dtrain.num_col()
    assert model.num_class == num_class
    assert model.num_tree == num_round * num_class * num_parallel_tree
    libpath = os.path.join(tmpdir, 'iris' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={},
                     verbose=True)

    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    assert predictor.num_feature == dtrain.num_col()
    assert predictor.num_class == num_class
    assert predictor.pred_transform == expected_pred_transform
    assert predictor.global_bias == 0.5
    assert predictor.sigmoid_alpha == 1.0
    dmat = treelite_runtime.DMatrix(X_test, dtype='float32')
    out_pred = predictor.predict(dmat)
    expected_pred = bst.predict(dtest)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
コード例 #7
0
def test_treelite_compiled(tmpdir, toy_model, test_data, ref_pred):
    libpath = os.path.join(tmpdir, 'mylib' + _libext())
    toolchain = os_compatible_toolchains()[0]
    toy_model.export_lib(toolchain=toolchain, libpath=libpath)

    predictor = treelite_runtime.Predictor(libpath=libpath)
    dmat = treelite_runtime.DMatrix(test_data)
    pred = predictor.predict(dmat)
    np.testing.assert_equal(pred, ref_pred)
コード例 #8
0
def test_xgb_boston(tmpdir, toolchain, objective, model_format,
                    num_parallel_tree):
    # pylint: disable=too-many-locals
    """Test Boston data (regression)"""
    X, y = load_boston(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        shuffle=False)
    dtrain = xgboost.DMatrix(X_train, label=y_train)
    dtest = xgboost.DMatrix(X_test, label=y_test)
    param = {
        'max_depth': 8,
        'eta': 1,
        'silent': 1,
        'objective': objective,
        'num_parallel_tree': num_parallel_tree
    }
    num_round = 10
    bst = xgboost.train(param,
                        dtrain,
                        num_boost_round=num_round,
                        evals=[(dtrain, 'train'), (dtest, 'test')])
    if model_format == 'json':
        model_name = 'boston.json'
        model_path = os.path.join(tmpdir, model_name)
        bst.save_model(model_path)
        model = treelite.Model.load(filename=model_path,
                                    model_format='xgboost_json')
    else:
        model_name = 'boston.model'
        model_path = os.path.join(tmpdir, model_name)
        bst.save_model(model_path)
        model = treelite.Model.load(filename=model_path,
                                    model_format='xgboost')

    assert model.num_feature == dtrain.num_col()
    assert model.num_class == 1
    assert model.num_tree == num_round * num_parallel_tree
    libpath = os.path.join(tmpdir, 'boston' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={'parallel_comp': model.num_tree},
                     verbose=True)

    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    assert predictor.num_feature == dtrain.num_col()
    assert predictor.num_class == 1
    assert predictor.pred_transform == 'identity'
    assert predictor.global_bias == 0.5
    assert predictor.sigmoid_alpha == 1.0
    dmat = treelite_runtime.DMatrix(X_test, dtype='float32')
    out_pred = predictor.predict(dmat)
    expected_pred = bst.predict(dtest)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
コード例 #9
0
def test_xgb_dart(tmpdir, toolchain, model_format):
    # pylint: disable=too-many-locals,too-many-arguments
    """Test dart booster with dummy data"""
    np.random.seed(0)
    nrow = 16
    ncol = 8
    X = np.random.randn(nrow, ncol)
    y = np.random.randint(0, 2, size=nrow)
    assert np.min(y) == 0
    assert np.max(y) == 1

    num_round = 50
    dtrain = xgboost.DMatrix(X, label=y)
    param = {
        'booster': 'dart',
        'max_depth': 5,
        'learning_rate': 0.1,
        'objective': 'binary:logistic',
        'sample_type': 'uniform',
        'normalize_type': 'tree',
        'rate_drop': 0.1,
        'skip_drop': 0.5
    }
    bst = xgboost.train(param, dtrain=dtrain, num_boost_round=num_round)

    if model_format == 'json':
        model_json_path = os.path.join(tmpdir, 'serialized.json')
        bst.save_model(model_json_path)
        model = treelite.Model.load(model_json_path,
                                    model_format='xgboost_json')
    else:
        model_bin_path = os.path.join(tmpdir, 'serialized.model')
        bst.save_model(model_bin_path)
        model = treelite.Model.load(model_bin_path, model_format='xgboost')

    assert model.num_feature == dtrain.num_col()
    assert model.num_class == 1
    assert model.num_tree == num_round
    libpath = os.path.join(tmpdir, "dart" + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={},
                     verbose=True)

    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    assert predictor.num_feature == dtrain.num_col()
    assert predictor.num_class == 1
    assert predictor.pred_transform == 'sigmoid'
    np.testing.assert_almost_equal(predictor.global_bias, 0, decimal=5)
    assert predictor.sigmoid_alpha == 1.0
    dmat = treelite_runtime.DMatrix(X, dtype='float32')
    out_pred = predictor.predict(dmat)
    expected_pred = bst.predict(dtrain)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
コード例 #10
0
ファイル: test_basic.py プロジェクト: trowind/treelite
def test_too_wide_matrix(tmpdir):
    """Test if Treelite correctly handles sparse matrix with more columns than the training data
    used for the model. In this case, an exception should be thrown"""
    libpath = os.path.join(tmpdir, dataset_db['mushroom'].libname + _libext())
    model = treelite.Model.load(dataset_db['mushroom'].model, model_format='xgboost')
    toolchain = os_compatible_toolchains()[0]
    model.export_lib(toolchain=toolchain, libpath=libpath, params={'quantize': 1}, verbose=True)

    X = csr_matrix(([], ([], [])), shape=(3, 1000))
    dmat = treelite_runtime.DMatrix(X, dtype='float32')
    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    assert predictor.num_feature == 127
    pytest.raises(treelite_runtime.TreeliteRuntimeError, predictor.predict, dmat)
コード例 #11
0
ファイル: conftest.py プロジェクト: trowind/treelite
 def compute_annotation(dataset):
     model = treelite.Model.load(
         dataset_db[dataset].model,
         model_format=dataset_db[dataset].format)
     if dataset_db[dataset].dtrain is None:
         return None
     dtrain = treelite_runtime.DMatrix(dataset_db[dataset].dtrain)
     annotator = treelite.Annotator()
     annotator.annotate_branch(model=model, dmat=dtrain, verbose=True)
     annotation_path = os.path.join(tmpdir, f'{dataset}.json')
     annotator.save(annotation_path)
     with open(annotation_path, 'r') as f:
         return f.read()
コード例 #12
0
ファイル: test_basic.py プロジェクト: trowind/treelite
def test_deficient_matrix(tmpdir):
    """Test if Treelite correctly handles sparse matrix with fewer columns than the training data
    used for the model. In this case, the matrix should be padded with zeros."""
    libpath = os.path.join(tmpdir, dataset_db['mushroom'].libname + _libext())
    model = treelite.Model.load(dataset_db['mushroom'].model, model_format='xgboost')
    toolchain = os_compatible_toolchains()[0]
    model.export_lib(toolchain=toolchain, libpath=libpath, params={'quantize': 1}, verbose=True)

    X = csr_matrix(([], ([], [])), shape=(3, 3))
    dmat = treelite_runtime.DMatrix(X, dtype='float32')
    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    assert predictor.num_feature == 127
    predictor.predict(dmat)  # should not crash
コード例 #13
0
def test_node_insert_delete(tmpdir, toolchain):
    """Test ability to add and remove nodes"""
    num_feature = 3
    builder = treelite.ModelBuilder(num_feature=num_feature)
    builder.append(treelite.ModelBuilder.Tree())
    builder[0][1].set_root()
    builder[0][1].set_numerical_test_node(
        feature_id=2, opname='<', threshold=-0.5, default_left=True,
        left_child_key=5, right_child_key=10)
    builder[0][5].set_leaf_node(-1)
    builder[0][10].set_numerical_test_node(
        feature_id=0, opname='<=', threshold=0.5, default_left=False,
        left_child_key=7, right_child_key=8)
    builder[0][7].set_leaf_node(0.0)
    builder[0][8].set_leaf_node(1.0)
    del builder[0][1]
    del builder[0][5]
    builder[0][5].set_categorical_test_node(
        feature_id=1, left_categories=[1, 2, 4], default_left=True,
        left_child_key=20, right_child_key=10)
    builder[0][20].set_leaf_node(2.0)
    builder[0][5].set_root()

    model = builder.commit()
    assert model.num_feature == num_feature
    assert model.num_class == 1
    assert model.num_tree == 1

    libpath = os.path.join(tmpdir, 'libtest' + _libext())
    model.export_lib(toolchain=toolchain, libpath=libpath, verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath)
    assert predictor.num_feature == num_feature
    assert predictor.num_class == 1
    assert predictor.pred_transform == 'identity'
    assert predictor.global_bias == 0.0
    assert predictor.sigmoid_alpha == 1.0
    for f0 in [-0.5, 0.5, 1.5, np.nan]:
        for f1 in [0, 1, 2, 3, 4, np.nan]:
            for f2 in [-1.0, -0.5, 1.0, np.nan]:
                x = np.array([[f0, f1, f2]])
                dmat = treelite_runtime.DMatrix(x, dtype='float32')
                pred = predictor.predict(dmat)
                if f1 in [1, 2, 4] or np.isnan(f1):
                    expected_pred = 2.0
                elif f0 <= 0.5 and not np.isnan(f0):
                    expected_pred = 0.0
                else:
                    expected_pred = 1.0
                if pred != expected_pred:
                    raise ValueError(f'Prediction wrong for f0={f0}, f1={f1}, f2={f2}: ' +
                                     f'expected_pred = {expected_pred} vs actual_pred = {pred}')
コード例 #14
0
def test_lightgbm_multiclass_classification(tmpdir, objective, boosting_type,
                                            toolchain):
    # pylint: disable=too-many-locals
    """Test a multi-class classifier"""
    model_path = os.path.join(tmpdir, 'iris_lightgbm.txt')

    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split

    X, y = load_iris(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        shuffle=False)
    dtrain = lightgbm.Dataset(X_train, y_train, free_raw_data=False)
    dtest = lightgbm.Dataset(X_test,
                             y_test,
                             reference=dtrain,
                             free_raw_data=False)
    param = {
        'task': 'train',
        'boosting': boosting_type,
        'objective': objective,
        'metric': 'multi_logloss',
        'num_class': 3,
        'num_leaves': 31,
        'learning_rate': 0.05
    }
    if boosting_type == 'rf':
        param.update({'bagging_fraction': 0.8, 'bagging_freq': 1})
    bst = lightgbm.train(param,
                         dtrain,
                         num_boost_round=10,
                         valid_sets=[dtrain, dtest],
                         valid_names=['train', 'test'])
    bst.save_model(model_path)

    model = treelite.Model.load(model_path, model_format='lightgbm')
    libpath = os.path.join(tmpdir, f'iris_{objective}' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={'quantize': 1},
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)

    dmat = treelite_runtime.DMatrix(X_test, dtype='float64')
    out_pred = predictor.predict(dmat)
    expected_pred = bst.predict(X_test)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
コード例 #15
0
def test_lightgbm_regression(tmpdir, objective, reg_sqrt, toolchain):
    # pylint: disable=too-many-locals
    """Test a regressor"""
    model_path = os.path.join(tmpdir, 'boston_lightgbm.txt')

    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split

    X, y = load_boston(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        shuffle=False)
    dtrain = lightgbm.Dataset(X_train, y_train, free_raw_data=False)
    dtest = lightgbm.Dataset(X_test,
                             y_test,
                             reference=dtrain,
                             free_raw_data=False)
    param = {
        'task': 'train',
        'boosting_type': 'gbdt',
        'objective': objective,
        'reg_sqrt': reg_sqrt,
        'metric': 'rmse',
        'num_leaves': 31,
        'learning_rate': 0.05
    }
    bst = lightgbm.train(param,
                         dtrain,
                         num_boost_round=10,
                         valid_sets=[dtrain, dtest],
                         valid_names=['train', 'test'])
    bst.save_model(model_path)

    model = treelite.Model.load(model_path, model_format='lightgbm')
    libpath = os.path.join(tmpdir, f'boston_{objective}' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={'quantize': 1},
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)

    dmat = treelite_runtime.DMatrix(X_test, dtype='float64')
    out_pred = predictor.predict(dmat)
    expected_pred = bst.predict(X_test)
    np.testing.assert_almost_equal(out_pred, expected_pred, decimal=5)
コード例 #16
0
ファイル: test_skl_importer.py プロジェクト: dmlc/treelite
def test_skl_converter_multiclass_classifier(tmpdir, import_method, clazz,
                                             toolchain):
    # pylint: disable=too-many-locals
    """Convert scikit-learn multi-class classifier"""
    X, y = load_iris(return_X_y=True)
    kwargs = {}
    if clazz == GradientBoostingClassifier:
        kwargs['init'] = 'zero'
    clf = clazz(max_depth=3, random_state=0, n_estimators=10, **kwargs)
    clf.fit(X, y)
    expected_prob = clf.predict_proba(X)

    if import_method == 'import_new':
        model = treelite.sklearn.import_model(clf)
    else:
        model = treelite.sklearn.import_model_with_model_builder(clf)
    assert model.num_feature == clf.n_features_
    assert model.num_class == clf.n_classes_
    assert (model.num_tree == clf.n_estimators *
            (clf.n_classes_ if clazz == GradientBoostingClassifier else 1))

    dtrain = treelite_runtime.DMatrix(X, dtype='float64')
    annotation_path = os.path.join(tmpdir, 'annotation.json')
    annotator = treelite.Annotator()
    annotator.annotate_branch(model=model, dmat=dtrain, verbose=True)
    annotator.save(path=annotation_path)

    libpath = os.path.join(tmpdir, 'skl' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={'annotate_in': annotation_path},
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath)
    assert predictor.num_feature == clf.n_features_
    assert predictor.num_class == clf.n_classes_
    assert (predictor.pred_transform == ('softmax'
                                         if clazz == GradientBoostingClassifier
                                         else 'identity_multiclass'))
    assert predictor.global_bias == 0.0
    assert predictor.sigmoid_alpha == 1.0
    out_prob = predictor.predict(dtrain)
    np.testing.assert_almost_equal(out_prob, expected_prob)
コード例 #17
0
def test_lightgbm_binary_classification(tmpdir, objective, toolchain):
    # pylint: disable=too-many-locals
    """Test a binary classifier"""
    dataset = 'mushroom'
    model_path = os.path.join(tmpdir, 'mushroom_lightgbm.txt')
    dtest_path = dataset_db[dataset].dtest

    dtrain = lightgbm.Dataset(dataset_db[dataset].dtrain)
    dtest = lightgbm.Dataset(dtest_path, reference=dtrain)
    param = {
        'task': 'train',
        'boosting_type': 'gbdt',
        'objective': objective,
        'metric': 'auc',
        'num_leaves': 7,
        'learning_rate': 0.1
    }
    bst = lightgbm.train(param,
                         dtrain,
                         num_boost_round=10,
                         valid_sets=[dtrain, dtest],
                         valid_names=['train', 'test'])
    bst.save_model(model_path)

    expected_prob = bst.predict(dtest_path)
    expected_margin = bst.predict(dtest_path, raw_score=True)

    model = treelite.Model.load(model_path, model_format='lightgbm')
    libpath = os.path.join(tmpdir, f'agaricus_{objective}' + _libext())
    dmat = treelite_runtime.DMatrix(load_svmlight_file(dtest_path,
                                                       zero_based=True)[0],
                                    dtype='float64')
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={},
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath, verbose=True)
    out_prob = predictor.predict(dmat)
    np.testing.assert_almost_equal(out_prob, expected_prob, decimal=5)
    out_margin = predictor.predict(dmat, pred_margin=True)
    np.testing.assert_almost_equal(out_margin, expected_margin, decimal=5)
コード例 #18
0
def test_nan_handling_with_categorical_splits(tmpdir, toolchain):
    """Test that NaN inputs are handled correctly in categorical splits"""

    # Test case taken from https://github.com/dmlc/treelite/issues/277
    X = np.array(30 * [[1]] + 30 * [[2]] + 30 * [[0]])
    y = np.array(60 * [5] + 30 * [10])
    train_data = lightgbm.Dataset(X, label=y, categorical_feature=[0])
    bst = lightgbm.train({}, train_data, 1)

    model_path = os.path.join(tmpdir, 'dummy_categorical.txt')
    libpath = os.path.join(tmpdir, 'dummy_categorical_lgb' + _libext())

    input_with_nan = np.array([[np.NaN], [0.0]])

    lgb_pred = bst.predict(input_with_nan)
    bst.save_model(model_path)

    model = treelite.Model.load(model_path, model_format='lightgbm')
    model.export_lib(toolchain=toolchain, libpath=libpath)
    predictor = treelite_runtime.Predictor(libpath)
    dmat = treelite_runtime.DMatrix(input_with_nan)
    tl_pred = predictor.predict(dmat)
    np.testing.assert_almost_equal(tl_pred, lgb_pred)
コード例 #19
0
def test_model_builder(tmpdir, use_annotation, quantize, toolchain,
                       test_round_trip):
    # pylint: disable=R0914,R0915
    """A simple model"""
    num_feature = 127
    pred_transform = 'sigmoid'
    builder = treelite.ModelBuilder(num_feature=num_feature,
                                    average_tree_output=False,
                                    pred_transform=pred_transform)

    # Build mushroom model
    tree = treelite.ModelBuilder.Tree()
    tree[0].set_numerical_test_node(feature_id=29,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=1,
                                    right_child_key=2)
    tree[1].set_numerical_test_node(feature_id=56,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=3,
                                    right_child_key=4)
    tree[3].set_numerical_test_node(feature_id=60,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=7,
                                    right_child_key=8)
    tree[7].set_leaf_node(leaf_value=1.89899647)
    tree[8].set_leaf_node(leaf_value=-1.94736838)
    tree[4].set_numerical_test_node(feature_id=21,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=9,
                                    right_child_key=10)
    tree[9].set_leaf_node(leaf_value=1.78378379)
    tree[10].set_leaf_node(leaf_value=-1.98135197)
    tree[2].set_numerical_test_node(feature_id=109,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=5,
                                    right_child_key=6)
    tree[5].set_numerical_test_node(feature_id=67,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=11,
                                    right_child_key=12)
    tree[11].set_leaf_node(leaf_value=-1.9854598)
    tree[12].set_leaf_node(leaf_value=0.938775539)
    tree[6].set_leaf_node(leaf_value=1.87096775)
    tree[0].set_root()
    builder.append(tree)

    tree = treelite.ModelBuilder.Tree()
    tree[0].set_numerical_test_node(feature_id=29,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=1,
                                    right_child_key=2)
    tree[1].set_numerical_test_node(feature_id=21,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=3,
                                    right_child_key=4)
    tree[3].set_leaf_node(leaf_value=1.14607906)
    tree[4].set_numerical_test_node(feature_id=36,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=7,
                                    right_child_key=8)
    tree[7].set_leaf_node(leaf_value=-6.87994671)
    tree[8].set_leaf_node(leaf_value=-0.10659159)
    tree[2].set_numerical_test_node(feature_id=109,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=5,
                                    right_child_key=6)
    tree[5].set_numerical_test_node(feature_id=39,
                                    opname='<',
                                    threshold=-9.53674316e-07,
                                    default_left=True,
                                    left_child_key=9,
                                    right_child_key=10)
    tree[9].set_leaf_node(leaf_value=-0.0930657759)
    tree[10].set_leaf_node(leaf_value=-1.15261209)
    tree[6].set_leaf_node(leaf_value=1.00423074)
    tree[0].set_root()
    builder.append(tree)

    model = builder.commit()
    if test_round_trip:
        checkpoint_path = os.path.join(tmpdir, 'checkpoint.bin')
        model.serialize(checkpoint_path)
        model = treelite.Model.deserialize(checkpoint_path)
    assert model.num_feature == num_feature
    assert model.num_class == 1
    assert model.num_tree == 2

    annotation_path = os.path.join(tmpdir, 'annotation.json')
    if use_annotation:
        dtrain = treelite_runtime.DMatrix(load_svmlight_file(
            dataset_db['mushroom'].dtrain, zero_based=True)[0],
                                          dtype='float32')
        annotator = treelite.Annotator()
        annotator.annotate_branch(model=model, dmat=dtrain, verbose=True)
        annotator.save(path=annotation_path)

    params = {
        'annotate_in': (annotation_path if use_annotation else 'NULL'),
        'quantize': (1 if quantize else 0),
        'parallel_comp': model.num_tree
    }
    libpath = os.path.join(tmpdir, 'mushroom' + _libext())
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params=params,
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    check_predictor(predictor, 'mushroom')
コード例 #20
0
def test_categorical_data_pandas_df_with_dummies(tmpdir, toolchain):
    # pylint: disable=too-many-locals
    """
    This toy example contains two features, both of which are categorical.
    The first has cardinality 3 and the second 5. The label was generated using
    the formula

       y = f(x0) + g(x1) + [noise with std=0.1]

    where f and g are given by the tables

       x0  f(x0)        x1  g(x1)
        0    -20         0     -2
        1    -10         1     -1
        2      0         2      0
                         3      1
                         4      2

    Unlike test_categorical_data(), this test will convert the categorical features into
    dummies using OneHotEncoder and store them into a Pandas Dataframe.
    """
    import pandas as pd

    rng = np.random.default_rng(seed=0)
    n_row = 100
    x0 = rng.integers(low=0, high=3, size=n_row)
    x1 = rng.integers(low=0, high=5, size=n_row)
    noise = rng.standard_normal(size=n_row) * 0.1
    y = (x0 * 10 - 20) + (x1 - 2) + noise
    df = pd.DataFrame({'x0': x0, 'x1': x1}).astype('category')
    df_dummies = pd.get_dummies(df, prefix=['x0', 'x1'], prefix_sep='=')
    assert df_dummies.columns.tolist() == [
        'x0=0', 'x0=1', 'x0=2', 'x1=0', 'x1=1', 'x1=2', 'x1=3', 'x1=4'
    ]

    model_path = os.path.join(tmpdir, 'toy_dummies.txt')
    libpath = os.path.join(tmpdir, 'dummies' + _libext())

    dtrain = lightgbm.Dataset(df_dummies, label=y)
    param = {
        'task': 'train',
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'rmse',
        'num_leaves': 7,
        'learning_rate': 0.1
    }
    bst = lightgbm.train(param,
                         dtrain,
                         num_boost_round=15,
                         valid_sets=[dtrain],
                         valid_names=['train'])
    lgb_out = bst.predict(df_dummies)
    bst.save_model(model_path)

    model = treelite.Model.load(model_path, model_format='lightgbm')
    model.export_lib(toolchain=toolchain,
                     libpath=libpath,
                     params={},
                     verbose=True)
    predictor = treelite_runtime.Predictor(libpath=libpath, verbose=True)
    tl_out = predictor.predict(
        treelite_runtime.DMatrix(df_dummies.values, dtype='float32'))
    np.testing.assert_almost_equal(lgb_out, tl_out, decimal=5)
コード例 #21
0
def test_xgb_deserializers(tmpdir, toolchain):
    # pylint: disable=too-many-locals
    """Test Boston data (regression)"""
    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split

    # Train xgboost model
    X, y = load_boston(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, shuffle=False
    )
    dtrain = xgboost.DMatrix(X_train, label=y_train)
    dtest = xgboost.DMatrix(X_test, label=y_test)
    param = {'max_depth': 8, 'eta': 1, 'silent': 1, 'objective': 'reg:linear'}
    num_round = 10
    bst = xgboost.train(param, dtrain, num_boost_round=num_round,
                        evals=[(dtrain, 'train'), (dtest, 'test')])

    # Serialize xgboost model
    model_bin_path = os.path.join(tmpdir, 'serialized.model')
    bst.save_model(model_bin_path)
    model_json_path = os.path.join(tmpdir, 'serialized.json')
    bst.save_model(model_json_path)

    # Construct Treelite models from xgboost serializations
    model_bin = treelite.Model.load(
        model_bin_path, model_format='xgboost'
    )
    model_json = treelite.Model.load(
        model_json_path, model_format='xgboost_json'
    )
    with open(model_json_path) as file_:
        json_str = file_.read()
    model_json_str = treelite.Model.from_xgboost_json(json_str)

    # Compile models to libraries
    model_bin_lib = os.path.join(tmpdir, 'bin{}'.format(_libext()))
    model_bin.export_lib(
        toolchain=toolchain,
        libpath=model_bin_lib,
        params={'parallel_comp': model_bin.num_tree}
    )
    model_json_lib = os.path.join(tmpdir, 'json{}'.format(_libext()))
    model_json.export_lib(
        toolchain=toolchain,
        libpath=model_json_lib,
        params={'parallel_comp': model_json.num_tree}
    )
    model_json_str_lib = os.path.join(tmpdir, 'json_str{}'.format(_libext()))
    model_json_str.export_lib(
        toolchain=toolchain,
        libpath=model_json_str_lib,
        params={'parallel_comp': model_json_str.num_tree}
    )

    # Generate predictors from compiled libraries
    predictor_bin = treelite_runtime.Predictor(model_bin_lib)
    assert predictor_bin.num_feature == dtrain.num_col()
    assert predictor_bin.num_class == 1
    assert predictor_bin.pred_transform == 'identity'
    assert predictor_bin.global_bias == pytest.approx(0.5)
    assert predictor_bin.sigmoid_alpha == pytest.approx(1.0)

    predictor_json = treelite_runtime.Predictor(model_json_lib)
    assert predictor_json.num_feature == dtrain.num_col()
    assert predictor_json.num_class == 1
    assert predictor_json.pred_transform == 'identity'
    assert predictor_json.global_bias == pytest.approx(0.5)
    assert predictor_json.sigmoid_alpha == pytest.approx(1.0)

    predictor_json_str = treelite_runtime.Predictor(model_json_str_lib)
    assert predictor_json_str.num_feature == dtrain.num_col()
    assert predictor_json_str.num_class == 1
    assert predictor_json_str.pred_transform == 'identity'
    assert predictor_json_str.global_bias == pytest.approx(0.5)
    assert predictor_json_str.sigmoid_alpha == pytest.approx(1.0)

    # Run inference with each predictor
    dmat = treelite_runtime.DMatrix(X_test, dtype='float32')
    bin_pred = predictor_bin.predict(dmat)
    json_pred = predictor_json.predict(dmat)
    json_str_pred = predictor_json_str.predict(dmat)

    expected_pred = bst.predict(dtest)
    np.testing.assert_almost_equal(bin_pred, expected_pred, decimal=5)
    np.testing.assert_almost_equal(json_pred, expected_pred, decimal=5)
    np.testing.assert_almost_equal(json_str_pred, expected_pred, decimal=5)
コード例 #22
0
#             X_test[0,1:] = np.where(np.isnan(X_test[0,1:]), tofill, X_test[0,1:])
#         batch = treelite_runtime.DMatrix(X_test) #shape(1,130)
#         y_preds = int((predictor.predict(batch))>0.5)
#         res.append(y_preds)
##sum(res)
##output: 6396

# In[ ]:

#调用janestreet API
import janestreet
env = janestreet.make_env()  # initialize the environment
iter_test = env.iter_test()  # an iterator which loops over the test set

tofill = f_mean.values.reshape((1, -1))
for (test_df, sample_prediction_df) in iter_test:

    if test_df['weight'].values[0] == 0:
        sample_prediction_df.action = 0
    else:
        X_test = test_df.loc[:, features].values
        if np.isnan(X_test.sum()):
            X_test[0, 1:] = np.where(np.isnan(X_test[0, 1:]), tofill,
                                     X_test[0, 1:])
        batch = treelite_runtime.DMatrix(X_test)
        y_preds = int((predictor.predict(batch)) > 0.5)
        sample_prediction_df.action = y_preds
    env.predict(sample_prediction_df)

# In[ ]:
コード例 #23
0
def _treelite_format_hook(data):
    """Helper function converting data into treelite format"""
    return treelite_runtime.DMatrix(data[0]), data[1]
コード例 #24
0
ファイル: benchmark.py プロジェクト: dmlc/treelite
import treelite
import treelite_runtime
from fast_svmlight_loader import load_svmlight
import sys
import os
import numpy as np
import time

datafile = sys.argv[1]
libfile = sys.argv[2]
modfile = sys.argv[3]

print('Loading data file {}'.format(datafile))
start = time.time()
dmat = load_svmlight(filename=datafile, verbose=False)
end = time.time()
print('Done loading data file {} in {} sec'.format(datafile, end - start))
X = dmat['data']
predictor = treelite_runtime.Predictor(libfile,
                                       verbose=True,
                                       include_master_thread=True)
nrow = X.shape[0]
for batchsize in np.logspace(np.log10(100), 5, 10).astype(np.int):
    print('*** batchsize = {}'.format(batchsize))
    for i in range(300):
        rbegin = np.random.randint(0, nrow - batchsize + 1)
        rend = rbegin + batchsize
        dmat = treelite_runtime.DMatrix(X[rbegin:rend])
        predictor.predict(dmat, pred_margin=True)