コード例 #1
0
ファイル: test_auxiliary.py プロジェクト: fagan2888/trempy
def get_bounds(label, version):
    """Return a set of valid bounds tailored for each parameter."""
    wedge = float(np.random.uniform(0.03, 0.50))

    # Questions
    if label in list(range(1, 46)):
        lower = float(np.random.uniform(0.01, 0.98 - wedge))
    else:
        # Handle version
        if version in ['scaled_archimedean']:
            if label in ['r_self', 'r_other']:
                lower = float(np.random.uniform(0.01, 5.0 - wedge))
            elif label in ['delta', 'self', 'other']:
                lower = float(np.random.uniform(0.01, 0.98 - wedge))
            else:
                raise TrempyError('flawed request for bounds')
        elif version in ['nonstationary']:
            if label in ['alpha', 'beta', 'gamma']:
                lower = float(np.random.uniform(0.01, 5.0 - wedge))
            elif label in ['y_scale']:
                lower = float(np.random.uniform(0.01, 0.98 - wedge))
            elif label.startswith('discount_factors'):
                lower = float(np.random.uniform(0.01, 0.98 - wedge))
            elif label.startswith('unrestricted_weights'):
                lower = float(np.random.uniform(0.01, 0.98 - wedge))
            else:
                raise TrempyError('flawed request for bounds')
        else:
            raise TrempyError('version not implemented')

    # Get upper bound by adding the wedge
    upper = lower + wedge

    # To handle exponential discounting and hyperbolic discounting.
    if label not in list(range(1,
                               46)) and label.startswith('discount_factors'):
        lower = 0.00

    # We want to check the case of the default bounds as well.
    if np.random.choice([True, False], p=[0.1, 0.9]):
        lower = DEFAULT_BOUNDS[label][0]
    if np.random.choice([True, False], p=[0.1, 0.9]):
        upper = DEFAULT_BOUNDS[label][1]

    bounds = [float(lower), float(upper)]

    bounds = [np.around(bound, decimals=4) for bound in bounds]

    return bounds
コード例 #2
0
ファイル: clsParas.py プロジェクト: fagan2888/trempy
    def get_values(self, perspective, which):
        """Directly access the values of the parameters."""
        # Antibugging
        np.testing.assert_equal(which in ['all', 'free'], True)

        # Distribute class attributes
        para_objs = self.attr['para_objs']
        optimizer = self.attr['optimizer']

        # Initialize containers
        values = list()

        for label in self.attr['para_labels']:
            for para_obj in para_objs:
                # We are only interested in the free parameters.
                if which == 'free' and para_obj.get_attr('is_fixed'):
                    continue
                # We are only interested in one particular parameter.
                if label != para_obj.get_attr('label'):
                    continue

                if perspective in ['econ']:
                    value = para_obj.get_attr('value')
                elif perspective in ['optim']:
                    # Handle choice of algorithm
                    value = self._to_optimizer(para_obj, optimizer)
                else:
                    raise TrempyError('misspecified request')

                values += [value]
        return values
コード例 #3
0
ファイル: clsParas.py プロジェクト: fagan2888/trempy
    def set_values(self, perspective, which, values):
        """Directly set the values of the parameters."""
        # Antibugging
        np.testing.assert_equal(which in ['all', 'free'], True)

        # Distribute class attributes
        para_objs = self.attr['para_objs']
        optimizer = self.attr['optimizer']

        count = 0
        for label in self.attr['para_labels']:
            for para_obj in para_objs:
                # We are only interested in the free parameters.
                if which == 'free' and para_obj.get_attr('is_fixed'):
                    continue
                # We are only interested in one particular parameter.
                if label != para_obj.get_attr('label'):
                    continue

                if perspective in ['econ']:
                    value = values[count]
                elif perspective in ['optim']:
                    bounds = para_obj.get_attr('bounds')
                    value = self._to_econ(values[count], bounds, optimizer)
                else:
                    raise TrempyError('misspecified request')

                para_obj.set_attr('value', value)
                para_obj.check_integrity()
                count += 1
コード例 #4
0
ファイル: read.py プロジェクト: fagan2888/trempy
def check_optional_args(init_dict):
    """Enforce input requirements for the init_dict."""
    version = init_dict['VERSION']['version']
    if version in ['scaled_archimedean']:
        pass

    elif version in ['nonstationary']:
        # Set discounting to None if not specified; check correct input.
        if 'discounting' in init_dict['VERSION'].keys():
            discounting = init_dict['VERSION']['discounting']
            np.testing.assert_equal(
                discounting in ['hyperbolic', 'exponential', None], True)
        else:
            init_dict['VERSION']['discounting'] = None

        if 'df_other' in init_dict['VERSION'].keys():
            df_other = init_dict['VERSION']['df_other']
            np.testing.assert_equal(
                df_other
                in ['free', 'linear', 'exponential', 'equal_univariate'], True)
        else:
            init_dict['VERSION']['df_other'] = 'equal_univariate'

        # Fill in stationary_model if not specified by user
        if 'stationary_model' not in init_dict['VERSION'].keys():
            init_dict['VERSION']['stationary_model'] = False

        # Enfore that there is a boolean variable 'heterogenenity'. Default: False.
        if 'heterogeneity' not in init_dict['VERSION'].keys():
            init_dict['VERSION']['heterogeneity'] = False

        optional_args = [
            'unrestricted_weights_{}'.format(int(x))
            for x in [0, 1, 3, 6, 12, 24]
        ]
        for label in optional_args:
            # If optional argument is not used (None), then we fix it at None.
            # In this case, the optimizer is not confused!
            if label in init_dict['DISCOUNTING'].keys():
                value, is_fixed, _ = init_dict['DISCOUNTING'][label]
                if value is None and is_fixed is False:
                    raise TrempyError('Optional argument misspecified.')
            else:
                raise TrempyError(
                    'Please set unused optional arguments to None in init file.'
                )
コード例 #5
0
ファイル: test_montecarlo.py プロジェクト: fagan2888/trempy
def perturbate_single(init_dict, label, value=None):
    """Perturbate a single parameter and fix all other parameters for estimation.

    We also set the bounds for the perturbed parameter to its default bounds.
    This increases the scope for perturbations.
    """
    old_dict = copy.deepcopy(init_dict)

    version = init_dict['VERSION']['version']
    if label not in PREFERENCE_PARAMETERS[version]:
        raise TrempyError('Version {0} has no parameters {1}'.format(version, label))

    # Fix variance for each question.
    for q in init_dict['QUESTIONS'].keys():
        init_dict['QUESTIONS'][q][1] = True

    # Handle optional parameters
    if label.startswith('unrestricted_weights'):
        not_used = (None in init_dict['TEMPORAL'].values())
        if not_used:
            raise TrempyError('Cannot set value for unused argument: {}.'.format(label))

    # Fix every parameter except for perturbed one. The perturbed one is "un-fixed".
    for group in ESTIMATION_GROUP[version]:
        for key in init_dict[group].keys():
            current_value, _, bounds = init_dict[group][key]
            if key == label:
                # Reset bounds to default
                lower, upper = DEFAULT_BOUNDS[label]
                # If no value is specified, draw a random value.
                if value is None:
                    value = np.random.uniform(lower + SMALL_FLOAT, upper - SMALL_FLOAT)
                init_dict[group][key] = [value, False, [lower, upper]]
                # Also, override old bounds in old dict.
                old_dict[group][key] = [current_value, False, [lower, upper]]
            # Fix all other parameters.
            else:
                init_dict[group][key] = [current_value, True, bounds]

    return old_dict, init_dict
コード例 #6
0
ファイル: shared_auxiliary.py プロジェクト: fagan2888/trempy
def get_optimal_compensations_scaled_archimedean(questions, upper, marginals, r_self,
                                                 r_other, delta, self, other):
    """Return the optimal compensations for all questions."""
    for question in questions:
        if question <= 30 and not question == 13:
            raise TrempyError('Temporal decisions not implemented for scaled_archimedean.')

    copula = get_copula_scaled_archimedean(upper, marginals, r_self, r_other, delta, self, other)

    m_optimal = dict()
    for q in questions:
        m_optimal[q] = determine_optimal_compensation(copula, q)
    return m_optimal
コード例 #7
0
ファイル: clsParas.py プロジェクト: fagan2888/trempy
    def get_para(self, label):
        """Access a single parameter and get value, free/fixed and bounds."""
        # Distribute class attributes
        para_objs = self.attr['para_objs']

        for para_obj in para_objs:
            if label == para_obj.get_attr('label'):
                rslt = [
                    para_obj.get_attr(info)
                    for info in ['value', 'is_fixed', 'bounds']
                ]
                return rslt

        raise TrempyError('parameter not available')
コード例 #8
0
ファイル: shared_auxiliary.py プロジェクト: fagan2888/trempy
def get_optimal_compensations(version, paras_obj, questions, **version_specific):
    """Get optimal compensations based on a model_obj."""
    nparas_econ = paras_obj.attr['nparas_econ']

    if version in ['scaled_archimedean']:
        # Handle version-specific objects outside paras_obj
        # assert 'marginals' in version_specific.keys()
        # assert 'upper' in version_specific.keys()
        marginals = version_specific['marginals']
        upper = version_specific['upper']

        # Variable args
        r_self, r_other, delta, self, other = paras_obj.get_values('econ', 'all')[:nparas_econ]

        # Optimal compensation
        args = [questions, upper, marginals, r_self, r_other, delta, self, other]
        m_optimal = get_optimal_compensations_scaled_archimedean(*args)

    elif version in ['nonstationary']:
        # Variable args
        # TODO: How to handle optional arguments? If unrestricted_weights is not generated,
        # this does not work.
        alpha, beta, gamma, y_scale, discount_factors_0, discount_factors_1, \
            discount_factors_3, discount_factors_6, discount_factors_12, discount_factors_24, \
            unrestricted_weights_0, unrestricted_weights_1, unrestricted_weights_3, \
            unrestricted_weights_6, unrestricted_weights_12, unrestricted_weights_24 = \
            paras_obj.get_values('econ', 'all')[:nparas_econ]

        # Optional arguments
        discounting = paras_obj.attr['discounting']
        stationary_model = paras_obj.attr['stationary_model']
        df_other = paras_obj.attr['df_other']

        # Optimal compensation
        args = [questions, alpha, beta, gamma, y_scale,
                discount_factors_0, discount_factors_1,
                discount_factors_3, discount_factors_6,
                discount_factors_12, discount_factors_24,
                unrestricted_weights_0, unrestricted_weights_1, unrestricted_weights_3,
                unrestricted_weights_6, unrestricted_weights_12, unrestricted_weights_24,
                # Optional arguments:
                discounting, stationary_model, df_other]
        m_optimal = get_optimal_compensations_nonstationary(*args)
    else:
        raise TrempyError('version not implemented')

    return m_optimal
コード例 #9
0
ファイル: simulate.py プロジェクト: fagan2888/trempy
def simulate(fname):
    """Simulate the model based on the initialization file."""
    model_obj = ModelCls(fname)
    version = model_obj.attr['version']

    # Get fixed args that do not change during simulation.
    args = [
        model_obj, 'sim_agents', 'questions', 'sim_seed', 'sim_file',
        'paras_obj', 'cutoffs'
    ]
    if version in ['scaled_archimedean']:
        args += ['upper', 'marginals']
        sim_agents, questions, sim_seed, sim_file, paras_obj, cutoffs, upper, marginals = \
            dist_class_attributes(*args)

        version_specific = {'upper': upper, 'marginals': marginals}
    elif version in ['nonstationary']:
        sim_agents, questions, sim_seed, sim_file, paras_obj, cutoffs = \
            dist_class_attributes(*args)
        version_specific = dict()
    else:
        raise TrempyError('version not implemented')

    np.random.seed(sim_seed)
    m_optimal = get_optimal_compensations(version, paras_obj, questions,
                                          **version_specific)

    # First, get number of preference parameters. Paras with higher index belong to questions!
    nparas_econ = paras_obj.attr['nparas_econ']

    # Now, get standard deviation for the error in each question.
    sds = paras_obj.get_values('econ', 'all')[nparas_econ:]
    heterogeneity = paras_obj.attr['heterogeneity']
    if heterogeneity:
        sds_time = sds[1]
        sds_risk = sds[2]

    # TODO: This is what I am proposing instead of the loop below
    # Simulate data
    # data = []
    # agent_identifier = np.arange(sim_agents)
    # for k, q in enumerate(questions):
    #     lower_cutoff, upper_cutoff = cutoffs[q]
    #     # If we estimate agent by agent, we use only two sds for time and risk quetions.
    #     if heterogeneity:
    #         if q <= 30:
    #             sds_current_q = sds_time * (upper_cutoff - lower_cutoff) / 200
    #         else:
    #             sds_current_q = sds_risk * (upper_cutoff - lower_cutoff) / 20
    #     else:
    #         sds_current_q = sds[k]

    #     m_latent = np.random.normal(loc=m_optimal[q], scale=sds_current_q, size=sim_agents)
    #     m_observed = np.clip(m_latent, a_min=lower_cutoff, a_max=+np.inf)
    #     m_observed[m_observed > upper_cutoff] = NEVER_SWITCHERS

    #     question_identifier = np.repeat(q, repeats=sim_agents)

    #     data += list(zip(agent_identifier, question_identifier, m_observed))

    data = []
    for i in range(sim_agents):
        for k, q in enumerate(questions):
            lower_cutoff, upper_cutoff = cutoffs[q]
            # If we estimate agent by agent, we use only two sds for time and risk quetions.
            if heterogeneity:
                if q <= 30:
                    sds_current_q = sds_time * (upper_cutoff -
                                                lower_cutoff) / 200
                else:
                    sds_current_q = sds_risk * (upper_cutoff -
                                                lower_cutoff) / 20
            else:
                sds_current_q = sds[k]

            m_latent = np.random.normal(loc=m_optimal[q],
                                        scale=sds_current_q,
                                        size=1)
            m_observed = np.clip(m_latent, a_min=lower_cutoff, a_max=+np.inf)
            m_observed[m_observed > upper_cutoff] = NEVER_SWITCHERS

            data += [[i, q, m_observed]]

    # Post-processing step
    df = pd.DataFrame(data)
    df.rename({
        0: 'Individual',
        1: 'Question',
        2: 'Compensation'
    },
              inplace=True,
              axis='columns')
    dtype = {
        'Individual': np.int,
        'Question': np.int,
        'Compensation': np.float
    }
    df = df.astype(dtype)
    df.set_index(['Individual', 'Question'], inplace=True, drop=False)
    df.sort_index(inplace=True)

    df.to_pickle(sim_file + '.trempy.pkl', protocol=2)

    x_econ_all_current = paras_obj.get_values('econ', 'all')

    fval, _ = criterion_function(df, questions, cutoffs, paras_obj, version,
                                 sds, **version_specific)

    write_info(version, x_econ_all_current, df, questions, fval, m_optimal,
               sim_file + '.trempy.info')

    return df, fval
コード例 #10
0
ファイル: shared_auxiliary.py プロジェクト: fagan2888/trempy
def print_init_dict(dict_, fname='test.trempy.ini'):
    """Print an initialization dictionary."""
    version = dict_['VERSION']['version']

    keys = ['VERSION', 'SIMULATION', 'ESTIMATION',
            'SCIPY-BFGS', 'SCIPY-POWELL', 'SCIPY-L-BFGS-B',
            'CUTOFFS', 'QUESTIONS']

    # Add keys based on version of the utility function
    if version in ['scaled_archimedean']:
        keys += ['UNIATTRIBUTE SELF', 'UNIATTRIBUTE OTHER', 'MULTIATTRIBUTE COPULA']
    elif version in ['nonstationary']:
        keys += ['ATEMPORAL', 'DISCOUNTING']
    else:
        raise TrempyError('version not implemented')

    questions = list(dict_['QUESTIONS'].keys())
    is_cutoffs = False

    with open(fname, 'w') as outfile:
        for key_ in keys:
            # We do not ned to print the CUTOFFS block if none are specified. So we first check
            # below if there is any need.
            if key_ not in ['CUTOFFS']:
                outfile.write(key_ + '\n\n')

            for label in sorted(dict_[key_].keys()):
                info = dict_[key_][label]

                label_internal = label

                # Manually translate labels to internal labels based on version
                if version in ['scaled_archimedean']:
                    if label in ['r'] and 'SELF' in key_:
                        label_internal = 'r_self'
                    elif label in ['r'] and 'OTHER' in key_:
                        label_internal = 'r_other'
                elif version in ['nonstationary']:
                    pass

                # Build format string for line
                str_ = '{:<25}'
                if label_internal in PREFERENCE_PARAMETERS[version] + questions:
                    # Handle optional arguments where None can occur
                    if (isinstance(label_internal, str) and
                       label_internal.startswith('unrestricted_weights') and info[0] is None):
                        str_ += ' {:>25} {:>10} '
                    # Preference parameters are formatted as floats
                    else:
                        str_ += ' {:25.4f} {:>10} '
                else:
                    # All other parameters are formatted as strings
                    str_ += ' {:>25}\n'

                # Handle string output (e.g. "True" or "None")
                if label in ['detailed', 'version', 'heterogeneity']:
                    info = str(info)
                if label in ['discounting', 'stationary_model']:
                    if info is None:
                        info = 'None'
                    else:
                        info = str(info)

                if (label_internal in PREFERENCE_PARAMETERS[version] + questions and
                   key_ != 'CUTOFFS'):
                    line, str_ = format_coefficient_line(label_internal, info, str_)
                elif key_ in ['CUTOFFS']:
                    line, str_ = format_cutoff_line(label, info)
                    # We do not need to print a [NONE, None] cutoff.
                    if line.count('None') == 2:
                        continue
                    if not is_cutoffs:
                        is_cutoffs = True
                        outfile.write(key_ + '\n\n')

                else:
                    line = [label, info]

                outfile.write(str_.format(*line))

            outfile.write('\n')
コード例 #11
0
ファイル: interface_copulpy.py プロジェクト: fagan2888/trempy
def get_copula_nonstationary(alpha, beta, gamma, y_scale,
                             discount_factors_0, discount_factors_1, discount_factors_3,
                             discount_factors_6, discount_factors_12, discount_factors_24,
                             unrestricted_weights_0, unrestricted_weights_1,
                             unrestricted_weights_3, unrestricted_weights_6,
                             unrestricted_weights_12, unrestricted_weights_24,
                             discounting=None,
                             stationary_model=False,
                             df_other='equal_univariate'
                             ):
    """Access the nonstationary utility copula."""
    # Anti-bugging.
    np.testing.assert_equal(discounting in [None, 'hyperbolic', 'exponential'], True)

    version = 'nonstationary'
    copula_spec = {'version': version}
    copula_spec[version] = {
        'discounting': discounting,
        'version': version,
        'y_scale': y_scale,
        'alpha': alpha,
        'gamma': gamma,
        'beta': beta,
    }

    # "Nonparametric" discount factors D_t for t in 0,1,3,6,12,24.
    dfx = {
        0: discount_factors_0,
        1: discount_factors_1,
        3: discount_factors_3,
        6: discount_factors_6,
        12: discount_factors_12,
        24: discount_factors_24,
    }
    copula_spec[version]['discount_factors'] = dfx

    if df_other in ['equal_univariate']:
        # We use the parametric restrictions on c_t derived from theory.
        dict_unrestricted = None
    elif df_other in ['free']:
        # The weight c_t in the CES function is free.
        dict_unrestricted = {
            0: unrestricted_weights_0,
            1: unrestricted_weights_1,
            3: unrestricted_weights_3,
            6: unrestricted_weights_6,
            12: unrestricted_weights_12,
            24: unrestricted_weights_24,
        }
        if None in dict_unrestricted.values():
            raise TrempyError('discount function for other is set to free but contains None type')
    elif df_other in ['linear']:
        # Impose a linear structure on c_t in the CES function.
        dict_unrestricted = {
            t: max(0, y_scale + t * unrestricted_weights_0) for t in [0, 1, 3, 6, 12, 24]
        }
    elif df_other in ['exponential']:
        # Impose an exponential structure on c_t in the CES function.
        dict_unrestricted = {t: y_scale * unrestricted_weights_0 ** t for t in [0, 1, 3, 6, 12, 24]}

    # The model becomes stationary.
    if stationary_model is True:
        dict_unrestricted = {key: y_scale for key in [0, 1, 3, 6, 12, 24]}

    copula_spec[version]['unrestricted_weights'] = dict_unrestricted

    # Build copula
    copula = UtilityCopulaCls(copula_spec)

    return copula
コード例 #12
0
ファイル: clsModel.py プロジェクト: fagan2888/trempy
    def write_out(self, fname):
        """Create a initialization dictionary of the current class instance."""
        init_dict = dict()

        version = self.get_attr('version')
        paras_obj = self.attr['paras_obj']
        questions = self.attr['questions']

        # Group block labels: basis labels and version specific labels.
        basis_labels = [
            'VERSION', 'SIMULATION', 'ESTIMATION', 'SCIPY-BFGS',
            'SCIPY-POWELL', 'SCIPY-L-BFGS-B', 'CUTOFFS', 'QUESTIONS'
        ]
        version_labels = []
        if version in ['scaled_archimedean']:
            version_labels += [
                'UNIATTRIBUTE SELF', 'UNIATTRIBUTE OTHER',
                'MULTIATTRIBUTE COPULA'
            ]
        elif version in ['nonstationary']:
            version_labels += ['ATEMPORAL', 'DISCOUNTING']

        # Create init dictionary
        for label in basis_labels + version_labels:
            init_dict[label] = dict()

        # Fill dictionary

        # 1) Version
        init_dict['VERSION']['version'] = version
        init_dict['VERSION']['heterogeneity'] = self.attr['heterogeneity']
        init_dict['VERSION']['stationary_model'] = self.attr[
            'stationary_model']
        init_dict['VERSION']['discounting'] = self.attr['discounting']
        init_dict['VERSION']['df_other'] = self.attr['df_other']

        # 2) Simulation
        init_dict['SIMULATION']['agents'] = self.attr['sim_agents']
        init_dict['SIMULATION']['seed'] = self.attr['sim_seed']
        init_dict['SIMULATION']['file'] = self.attr['sim_file']

        # 3) Estimation
        init_dict['ESTIMATION']['detailed'] = self.attr['est_detailed']
        init_dict['ESTIMATION']['optimizer'] = self.attr['optimizer']
        init_dict['ESTIMATION']['agents'] = self.attr['est_agents']
        init_dict['ESTIMATION']['skip'] = self.attr['num_skip']
        init_dict['ESTIMATION']['file'] = self.attr['est_file']
        init_dict['ESTIMATION']['maxfun'] = self.attr['maxfun']
        init_dict['ESTIMATION']['start'] = self.attr['start']

        # 4+5) Optimizer options
        init_dict['SCIPY-BFGS'] = dict()
        init_dict['SCIPY-BFGS']['gtol'] = self.attr['opt_options'][
            'SCIPY-BFGS']['gtol']
        init_dict['SCIPY-BFGS']['eps'] = self.attr['opt_options'][
            'SCIPY-BFGS']['eps']

        init_dict['SCIPY-POWELL'] = dict()
        init_dict['SCIPY-POWELL']['xtol'] = self.attr['opt_options'][
            'SCIPY-POWELL']['xtol']
        init_dict['SCIPY-POWELL']['ftol'] = self.attr['opt_options'][
            'SCIPY-POWELL']['ftol']

        init_dict['SCIPY-L-BFGS-B'] = dict()
        init_dict['SCIPY-L-BFGS-B']['gtol'] = self.attr['opt_options'][
            'SCIPY-L-BFGS-B']['gtol']
        init_dict['SCIPY-L-BFGS-B']['ftol'] = self.attr['opt_options'][
            'SCIPY-L-BFGS-B']['ftol']
        init_dict['SCIPY-L-BFGS-B']['eps'] = self.attr['opt_options'][
            'SCIPY-L-BFGS-B']['eps']

        # 6) Cutoffs
        init_dict['CUTOFFS'] = self.attr['cutoffs']

        # 7) Questions
        for q in questions:
            init_dict['QUESTIONS'][q] = paras_obj.get_para(q)

        # 8) Preference parameters
        if version in ['scaled_archimedean']:
            init_dict['UNIATTRIBUTE SELF']['marginal'] = self.attr[
                'marginals'][0]
            init_dict['UNIATTRIBUTE SELF']['r'] = paras_obj.get_para('r_self')
            init_dict['UNIATTRIBUTE SELF']['max'] = self.attr['upper'][0]

            init_dict['UNIATTRIBUTE OTHER']['marginal'] = self.attr[
                'marginals'][1]
            init_dict['UNIATTRIBUTE OTHER']['r'] = paras_obj.get_para(
                'r_other')
            init_dict['UNIATTRIBUTE OTHER']['max'] = self.attr['upper'][1]

            init_dict['MULTIATTRIBUTE COPULA']['delta'] = paras_obj.get_para(
                'delta')
            init_dict['MULTIATTRIBUTE COPULA']['self'] = paras_obj.get_para(
                'self')
            init_dict['MULTIATTRIBUTE COPULA']['other'] = paras_obj.get_para(
                'other')
        elif version in ['nonstationary']:
            init_dict['ATEMPORAL']['alpha'] = paras_obj.get_para('alpha')
            init_dict['ATEMPORAL']['beta'] = paras_obj.get_para('beta')
            init_dict['ATEMPORAL']['gamma'] = paras_obj.get_para('gamma')
            init_dict['ATEMPORAL']['y_scale'] = paras_obj.get_para('y_scale')

            init_dict['DISCOUNTING']['discount_factors_0'] = \
                paras_obj.get_para('discount_factors_0')
            init_dict['DISCOUNTING']['discount_factors_1'] = \
                paras_obj.get_para('discount_factors_1')
            init_dict['DISCOUNTING']['discount_factors_3'] = \
                paras_obj.get_para('discount_factors_3')
            init_dict['DISCOUNTING']['discount_factors_6'] = \
                paras_obj.get_para('discount_factors_6')
            init_dict['DISCOUNTING']['discount_factors_12'] = \
                paras_obj.get_para('discount_factors_12')
            init_dict['DISCOUNTING']['discount_factors_24'] = \
                paras_obj.get_para('discount_factors_24')

            init_dict['DISCOUNTING']['unrestricted_weights_0'] = \
                paras_obj.get_para('unrestricted_weights_0')
            init_dict['DISCOUNTING']['unrestricted_weights_1'] = \
                paras_obj.get_para('unrestricted_weights_1')
            init_dict['DISCOUNTING']['unrestricted_weights_3'] = \
                paras_obj.get_para('unrestricted_weights_3')
            init_dict['DISCOUNTING']['unrestricted_weights_6'] = \
                paras_obj.get_para('unrestricted_weights_6')
            init_dict['DISCOUNTING']['unrestricted_weights_12'] = \
                paras_obj.get_para('unrestricted_weights_12')
            init_dict['DISCOUNTING']['unrestricted_weights_24'] = \
                paras_obj.get_para('unrestricted_weights_24')
        else:
            raise TrempyError('version not implemented')

        print_init_dict(init_dict, fname)
コード例 #13
0
ファイル: clsParas.py プロジェクト: fagan2888/trempy
    def __init__(self, init_dict):
        """Initialize the parameter class."""
        version = init_dict['VERSION']['version']

        self.attr = dict()
        self.attr['heterogeneity'] = init_dict['VERSION']['heterogeneity']
        self.attr['optimizer'] = init_dict['ESTIMATION']['optimizer']
        self.attr['version'] = version
        self.attr['para_labels'] = []
        self.attr['para_objs'] = []

        if version in ['nonstationary']:
            self.attr['stationary_model'] = init_dict['VERSION'][
                'stationary_model']
            self.attr['discounting'] = init_dict['VERSION']['discounting']
            self.attr['df_other'] = init_dict['VERSION']['df_other']

        # Preference parameters are handled for each version separately.
        for label in PREFERENCE_PARAMETERS[version]:

            if version in ['scaled_archimedean']:
                if label in ['r_self']:
                    value, is_fixed, bounds = init_dict['UNIATTRIBUTE SELF'][
                        'r']
                elif label in ['r_other']:
                    value, is_fixed, bounds = init_dict['UNIATTRIBUTE OTHER'][
                        'r']
                else:
                    value, is_fixed, bounds = init_dict[
                        'MULTIATTRIBUTE COPULA'][label]

            elif version in ['nonstationary']:
                if label in ['alpha', 'beta', 'gamma', 'y_scale']:
                    value, is_fixed, bounds = init_dict['ATEMPORAL'][label]
                elif (label.startswith('discount_factors')
                      or label.startswith('unrestricted_weights')):
                    value, is_fixed, bounds = init_dict['DISCOUNTING'][label]
                else:
                    raise TrempyError('parameter label not implemented')

            else:
                raise TrempyError('version not implemented')

            self.attr['para_objs'] += [ParaCls(label, value, is_fixed, bounds)]
            self.attr['para_labels'] += [label]

        # Record created parameters so we can use that later in estimate step to get
        #  standard deviations without using hard-coded numbers
        self.attr['nparas_econ'] = len(self.attr['para_objs'])

        # QUESTION specific parameters
        for label in sorted(init_dict['QUESTIONS'].keys()):
            value, is_fixed, bounds = init_dict['QUESTIONS'][label]
            self.attr['para_objs'] += [
                ParaCls(int(label), value, is_fixed, bounds)
            ]
            self.attr['para_labels'] += [int(label)]

        self.attr['nparas_questions'] = len(
            self.attr['para_objs']) - self.attr['nparas_econ']
        self.check_integrity()
コード例 #14
0
ファイル: clsModel.py プロジェクト: fagan2888/trempy
    def __init__(self, fname):
        """Init class."""
        init_dict = read(fname)
        version = init_dict['VERSION']['version']

        # We first tackle the more complex issue of parameter management.
        self.attr = dict()
        self.attr['version'] = version
        self.attr['heterogeneity'] = init_dict['VERSION']['heterogeneity']
        self.attr['stationary_model'] = init_dict['VERSION'][
            'stationary_model']
        self.attr['discounting'] = init_dict['VERSION']['discounting']
        self.attr['df_other'] = init_dict['VERSION']['df_other']

        # Parameters
        paras_obj = ParasCls(init_dict)
        self.attr['paras_obj'] = paras_obj

        # Version specific parameters that don't change during estimation.
        if version in ['scaled_archimedean']:
            # Information
            upper = []
            upper += [init_dict['UNIATTRIBUTE SELF']['max']]
            upper += [init_dict['UNIATTRIBUTE OTHER']['max']]
            self.attr['upper'] = upper

            # Marginal utility functions
            marginals = []
            marginals += [init_dict['UNIATTRIBUTE SELF']['marginal']]
            marginals += [init_dict['UNIATTRIBUTE OTHER']['marginal']]
            self.attr['marginals'] = marginals
        elif version in ['nonstationary']:
            pass
        else:
            raise TrempyError('version not implemented')

        # Cutoffs
        self.attr['cutoffs'] = init_dict['CUTOFFS']

        # Simulation
        self.attr['sim_agents'] = init_dict['SIMULATION']['agents']
        self.attr['sim_seed'] = init_dict['SIMULATION']['seed']
        self.attr['sim_file'] = init_dict['SIMULATION']['file']

        # Estimation
        self.attr['est_detailed'] = init_dict['ESTIMATION']['detailed']
        self.attr['optimizer'] = init_dict['ESTIMATION']['optimizer']

        self.attr['est_agents'] = init_dict['ESTIMATION']['agents']
        self.attr['num_skip'] = init_dict['ESTIMATION']['skip']
        self.attr['est_file'] = init_dict['ESTIMATION']['file']
        self.attr['maxfun'] = init_dict['ESTIMATION']['maxfun']
        self.attr['start'] = init_dict['ESTIMATION']['start']

        # Optimizer options
        self.attr['opt_options'] = dict()

        self.attr['opt_options']['SCIPY-BFGS'] = dict()
        self.attr['opt_options']['SCIPY-BFGS']['gtol'] = init_dict[
            'SCIPY-BFGS']['gtol']
        self.attr['opt_options']['SCIPY-BFGS']['eps'] = init_dict[
            'SCIPY-BFGS']['eps']

        self.attr['opt_options']['SCIPY-POWELL'] = dict()
        self.attr['opt_options']['SCIPY-POWELL']['xtol'] = init_dict[
            'SCIPY-POWELL']['xtol']
        self.attr['opt_options']['SCIPY-POWELL']['ftol'] = init_dict[
            'SCIPY-POWELL']['ftol']

        self.attr['opt_options']['SCIPY-L-BFGS-B'] = dict()
        self.attr['opt_options']['SCIPY-L-BFGS-B']['gtol'] = init_dict[
            'SCIPY-L-BFGS-B']['gtol']
        self.attr['opt_options']['SCIPY-L-BFGS-B']['ftol'] = init_dict[
            'SCIPY-L-BFGS-B']['ftol']
        self.attr['opt_options']['SCIPY-L-BFGS-B']['eps'] = init_dict[
            'SCIPY-L-BFGS-B']['eps']

        para_objs = paras_obj.get_attr('para_objs')

        questions = []
        for para_obj in para_objs:
            label = para_obj.get_attr('label')
            if label in PREFERENCE_PARAMETERS[version]:
                continue
            else:
                questions += [label]

        self.attr['questions'] = sorted(questions)
        self.attr['num_questions'] = len(questions)

        # We now need to check the integrity of the class instance.
        self._check_integrity()
コード例 #15
0
def estimate(fname):
    """Estimate the model by the method of maximum likelihood."""
    estimate_cleanup()

    model_obj = ModelCls(fname)

    # Distribute class parameters except for economic parameters and version-specific thing
    args = [model_obj, 'version', 'est_file', 'questions', 'paras_obj', 'start', 'cutoffs',
            'maxfun', 'est_detailed', 'opt_options', 'optimizer', 'est_agents', 'num_skip']

    version, est_file, questions, paras_obj, start, cutoffs, maxfun, est_detailed, \
        opt_options, optimizer, est_agents, num_skip = dist_class_attributes(*args)

    # Handle version-specific objects not included in the para_obj
    if version in ['scaled_archimedean']:
        upper, marginals = dist_class_attributes(*[model_obj, 'upper', 'marginals'])
        version_specific = {'upper': upper, 'marginals': marginals}
    elif version in ['nonstationary']:
        version_specific = dict()

    # We only need to continue if there is at least one parameter to actually estimate.
    if len(paras_obj.get_values('optim', 'free')) == 0:
        raise TrempyError('no free parameter to estimate')

    # Some initial setup
    df_obs = process(est_file, questions, num_skip, est_agents, cutoffs)

    estimate_obj = EstimateClass(
        df=df_obs, cutoffs=cutoffs, questions=questions, paras_obj=copy.deepcopy(paras_obj),
        max_eval=maxfun, optimizer=optimizer, version=version, **version_specific)

    # We lock in an evaluation at the starting values as not all optimizers actually start there.
    if start in ['auto']:
        paras_obj = get_automatic_starting_values(paras_obj, df_obs, questions,
                                                  version, **version_specific)

    # Objects for scipy.minimize
    x_optim_free_start = paras_obj.get_values('optim', 'free')
    x_free_bounds = paras_obj.get_bounds('free')
    estimate_obj.evaluate(x_optim_free_start)

    # We simulate a sample at the starting point.
    if est_detailed:
        estimate_simulate('start', x_optim_free_start, model_obj, df_obs)

    # Optimization of likelihood function
    if maxfun > 1:

        options = dict()

        if optimizer == 'SCIPY-BFGS':
            options['gtol'] = opt_options['SCIPY-BFGS']['gtol']
            options['eps'] = opt_options['SCIPY-BFGS']['eps']
            method = 'BFGS'
            bounds = None
        elif optimizer == 'SCIPY-POWELL':
            options['ftol'] = opt_options['SCIPY-POWELL']['ftol']
            options['xtol'] = opt_options['SCIPY-POWELL']['xtol']
            method = 'POWELL'
            bounds = None
        elif optimizer == 'SCIPY-L-BFGS-B':
            options['gtol'] = opt_options['SCIPY-L-BFGS-B']['gtol']
            options['ftol'] = opt_options['SCIPY-L-BFGS-B']['ftol']
            options['eps'] = opt_options['SCIPY-L-BFGS-B']['eps']
            method = 'L-BFGS-B'
            bounds = x_free_bounds
            # Add bounds
        else:
            raise TrempyError('flawed choice of optimization method')

        try:
            opt = minimize(estimate_obj.evaluate, x_optim_free_start, method=method,
                           options=options, bounds=bounds)
        except MaxfunError:
            opt = dict()
            opt['message'] = 'Optimization reached maximum number of function evaluations.'
            opt['success'] = False
    else:
        # We are not faced with a serious estimation request.
        opt = dict()
        opt['message'] = 'Single evaluation of criterion function at starting values.'
        opt['success'] = False

    # Now we can wrap up all estimation related tasks.
    estimate_obj.finish(opt)

    # We simulate a sample at the stopping point.
    if est_detailed:
        x_econ_all_step = estimate_obj.get_attr('x_econ_all_step')
        paras_obj.set_values('econ', 'all', x_econ_all_step)
        x_optim_free_step = paras_obj.get_values('optim', 'free')
        estimate_simulate('stop', x_optim_free_step, model_obj, df_obs)
        shutil.copy('stop/compare.trempy.info', 'compare.trempy.info')

    # We only return the best value of the criterion function and the corresponding parameter
    # vector.
    rslt = list()
    rslt.append(estimate_obj.get_attr('f_step'))
    rslt.append(estimate_obj.get_attr('x_econ_all_step'))

    return rslt
コード例 #16
0
ファイル: test_auxiliary.py プロジェクト: fagan2888/trempy
def random_dict(constr):
    """Create a random initialization file."""
    dict_ = dict()

    version = np.random.choice(['scaled_archimedean', 'nonstationary'])
    num_questions = np.random.randint(8, 14)
    fname = get_random_string()
    discounting = np.random.choice([None, 'exponential', 'hyperbolic'],
                                   p=[0.8, 0.1, 0.1])
    heterogeneity = np.random.choice([True, False], p=[0.1, 0.9])
    df_other = np.random.choice(
        ['equal_univariate', 'free', 'linear', 'exponential'],
        p=[0.7, 0.1, 0.1, 0.1])

    if constr is not None:
        # Handle version specific data.
        if 'version' in constr.keys():
            version = constr['version']
        if 'all_questions' in constr.keys():
            num_questions = 45
        if 'fname' in constr.keys():
            fname = constr['fname']
        if 'discounting' in constr.keys():
            discounting = constr['discounting']
        if 'heterogeneity' in constr.keys():
            heterogeneity = constr['heterogeneity']

    dict_['VERSION'] = {'version': version}

    # Optional arguments for model type
    if version in ['nonstationary']:
        dict_['VERSION']['stationary_model'] = np.random.choice([False, True],
                                                                p=[0.9, 0.1])
        dict_['VERSION']['heterogeneity'] = heterogeneity
        dict_['VERSION']['discounting'] = discounting
        dict_['VERSION']['df_other'] = df_other
    elif version in ['scaled_archimedean']:
        dict_['VERSION']['stationary_model'] = True
        dict_['VERSION']['heterogeneity'] = False
        dict_['VERSION']['discounting'] = None
        dict_['VERSION']['df_other'] = 'equal_univariate'
        heterogeneity = False

    sim_agents = np.random.randint(2, 10)
    is_fixed = np.random.choice([True, False],
                                size=num_questions +
                                len(PREFERENCE_PARAMETERS[version]))
    # We need to ensure at least one parameter is free for a valid estimation request.
    if is_fixed.tolist().count('False') == 0:
        is_fixed[0] = 'False'

    # Bounds and values. Be careful: the order of labels matters!
    bounds = [
        get_bounds(label, version) for label in PREFERENCE_PARAMETERS[version]
    ]
    values = [
        get_value(bounds[i], label, version)
        for i, label in enumerate(PREFERENCE_PARAMETERS[version])
    ]

    if version in ['scaled_archimedean']:
        # Initial setup to ensure constraints across options.
        marginals = np.random.choice(['exponential', 'power'], 2)
        upper_bounds = np.random.randint(500, 800 + 1, 2)

        # We start with sampling all preference parameters.
        dict_['UNIATTRIBUTE SELF'], i = dict(), 0
        dict_['UNIATTRIBUTE SELF']['r'] = [values[i], is_fixed[i], bounds[i]]
        dict_['UNIATTRIBUTE SELF']['max'] = upper_bounds[i]
        dict_['UNIATTRIBUTE SELF']['marginal'] = marginals[i]

        dict_['UNIATTRIBUTE OTHER'], i = dict(), 1
        dict_['UNIATTRIBUTE OTHER']['r'] = [values[i], is_fixed[i], bounds[i]]
        dict_['UNIATTRIBUTE OTHER']['max'] = upper_bounds[i]
        dict_['UNIATTRIBUTE OTHER']['marginal'] = marginals[i]

        dict_['MULTIATTRIBUTE COPULA'] = dict()
        for i, label in enumerate(['delta', 'self', 'other']):
            # We increment index because (r_self, r_other) are handled above.
            j = i + 2
            dict_['MULTIATTRIBUTE COPULA'][label] = [
                values[j], is_fixed[j], bounds[j]
            ]

    elif version in ['nonstationary']:
        dict_['ATEMPORAL'] = dict()
        dict_['DISCOUNTING'] = dict()
        for i, label in enumerate(PREFERENCE_PARAMETERS[version]):
            if label in ['alpha', 'beta', 'gamma', 'y_scale']:
                dict_['ATEMPORAL'][label] = [values[i], is_fixed[i], bounds[i]]
            else:
                dict_['DISCOUNTING'][label] = [
                    values[i], is_fixed[i], bounds[i]
                ]

        # Handle optional arguments. If one argument is not used, set all to None and fix them.
        optional_args = [
            'unrestricted_weights_{}'.format(int(x))
            for x in [0, 1, 3, 6, 12, 24]
        ]

        if df_other in ['equal_univariate']:
            for label in optional_args:
                dict_['DISCOUNTING'][label] = [None, True, [0.01, 1.00]]
        elif df_other in ['free']:
            pass
        elif df_other in ['linear', 'exponential']:
            if not label.endswith('_0'):
                dict_['DISCOUNTING'][label] = [None, True, [0.01, 1.00]]

    else:
        raise TrempyError('version not implemented')

    # General part of the init file that does not change with the version.

    # Currently 16 questions are implemented.
    if num_questions >= 45:
        questions = list(range(1, 46))
    else:
        if version in ['scaled_archimedean']:
            questions = np.random.choice([13] + list(range(31, 46)),
                                         size=num_questions,
                                         replace=False)
            # print('Generated only atemporal questions because version is scaled_archimedean')
        else:
            if heterogeneity:
                questions = np.array([1, 2])
                questions = np.append(
                    questions,
                    np.random.choice(list(range(3, 46)),
                                     size=(num_questions - 2),
                                     replace=False))
            else:
                questions = np.random.choice(list(range(1, 46)),
                                             size=num_questions,
                                             replace=False)

    dict_['QUESTIONS'] = dict()

    for i, q in enumerate(questions):
        bounds = get_bounds(q, version)
        value = get_value(bounds, q, version)
        dict_['QUESTIONS'][q] = [
            value, is_fixed[i + len(PREFERENCE_PARAMETERS[version])], bounds
        ]

    # If heterogeneity is True, we want to unfix the first two questions and fix the rest.
    if heterogeneity:
        dict_['QUESTIONS'][1][1] = False
        dict_['QUESTIONS'][2][1] = False
        for q in questions:
            if q in [1, 2]:
                continue
            dict_['QUESTIONS'][q] = [0.5, True, [0, HUGE_FLOAT]]

    # We now add some cutoff values.
    dict_['CUTOFFS'] = dict()
    for q in questions:
        if np.random.choice([True, False]):
            dict_['CUTOFFS'][q] = get_cutoffs()

    # We now turn to all simulation details.
    dict_['SIMULATION'] = dict()
    dict_['SIMULATION']['agents'] = sim_agents
    dict_['SIMULATION']['seed'] = np.random.randint(1, 1000)
    dict_['SIMULATION']['file'] = fname

    # We sample valid estimation requests.
    est_agents = np.random.randint(1, sim_agents)
    num_skip = np.random.randint(0, sim_agents - est_agents)

    dict_['ESTIMATION'] = dict()
    dict_['ESTIMATION']['optimizer'] = np.random.choice(
        ['SCIPY-BFGS', 'SCIPY-L-BFGS-B', 'SCIPY-POWELL'])
    dict_['ESTIMATION']['detailed'] = np.random.choice([True, False],
                                                       p=[0.9, 0.1])
    dict_['ESTIMATION']['start'] = np.random.choice(['init', 'auto'])
    dict_['ESTIMATION']['agents'] = est_agents
    dict_['ESTIMATION']['skip'] = num_skip
    dict_['ESTIMATION']['maxfun'] = np.random.randint(1, 10)
    dict_['ESTIMATION']['file'] = fname + '.trempy.pkl'

    # We sample optimizer options.
    dict_['SCIPY-BFGS'] = dict()
    dict_['SCIPY-BFGS']['gtol'] = np.random.lognormal()
    dict_['SCIPY-BFGS']['eps'] = np.random.lognormal()

    dict_['SCIPY-L-BFGS-B'] = dict()
    dict_['SCIPY-L-BFGS-B']['gtol'] = np.random.lognormal()
    dict_['SCIPY-L-BFGS-B']['ftol'] = np.random.lognormal()
    dict_['SCIPY-L-BFGS-B']['eps'] = np.random.lognormal()

    dict_['SCIPY-POWELL'] = dict()
    dict_['SCIPY-POWELL']['xtol'] = np.random.lognormal()
    dict_['SCIPY-POWELL']['ftol'] = np.random.lognormal()

    # Now we need to impose possible constraints.
    if constr is not None:
        if 'maxfun' in constr.keys():
            dict_['ESTIMATION']['maxfun'] = constr['maxfun']

        if 'num_agents' in constr.keys():
            dict_['SIMULATION']['agents'] = constr['num_agents']
            dict_['ESTIMATION']['agents'] = constr['num_agents']
            dict_['ESTIMATION']['skip'] = 0

        if 'est_file' in constr.keys():
            dict_['ESTIMATION']['file'] = constr['est_file']

        if 'detailed' in constr.keys():
            dict_['ESTIMATION']['detailed'] = constr['detailed']

        if 'start' in constr.keys():
            dict_['ESTIMATION']['start'] = constr['start']

        if 'optimizer' in constr.keys():
            dict_['ESTIMATION']['optimizer'] = constr['optimizer']

    return dict_
コード例 #17
0
ファイル: read.py プロジェクト: fagan2888/trempy
def read(fname):
    """Read the initialization file."""
    # Check input
    np.testing.assert_equal(os.path.exists(fname), True)

    # Initialization
    dict_, group = {}, None

    with open(fname) as in_file:

        # Get lines
        file_lines = in_file.readlines()
        lines = list(file_lines)

        # Get the version. This is necessary because version is needed always first!
        for line in lines:
            list_ = shlex.split(line)
            # Determine special cases
            is_empty, is_group, is_comment = process_cases(list_)
            if is_group or is_comment or is_empty:
                continue
            flag, value = list_[:2]
            if flag in ['version']:
                version = value
                # We only needed the version flag
                break

        # Now process the file again.
        for line in lines:

            list_ = shlex.split(line)

            # Determine special cases
            is_empty, is_group, is_comment = process_cases(list_)

            # Applicability
            if is_empty or is_comment:
                continue

            # Prepare dictionary
            if is_group:
                group = ' '.join(list_)
                dict_[group] = dict()
                continue

            # Code below is only executed if the current line is not a group name
            flag, value = list_[:2]

            # Handle the VERSION block.
            if (group in ['VERSION']) and (flag in ['version']):
                version = value

            # Type conversions for the NON-CUTOFF block
            if group not in ['CUTOFFS']:
                value = type_conversions(flag, value)

            # We need to make sure questions and cutoffs are not duplicated.
            if flag in dict_[group].keys():
                raise TrempyError('duplicated information')

            # Handle the basic blocks
            if group in BASIC_GROUPS:
                if group in ['CUTOFFS']:
                    dict_[group][flag] = process_cutoff_line(list_)
                elif group in ['QUESTIONS']:
                    dict_[group][flag] = process_coefficient_line(
                        group, list_, value)
                else:
                    dict_[group][flag] = value

            # Handle blocks specific to the 'version' of the utility function.
            if group in ESTIMATION_GROUP[version]:
                if version in ['scaled_archimedean']:
                    if flag not in ['max', 'marginal']:
                        dict_[group][flag] = process_coefficient_line(
                            group, list_, value)
                    else:
                        dict_[group][flag] = value

                elif version in ['nonstationary']:
                    dict_[group][flag] = process_coefficient_line(
                        group, list_, value)

                else:
                    raise TrempyError('version not implemented')

    # We allow for initialization files where no CUTOFFS are specified.
    if "CUTOFFS" not in dict_.keys():
        dict_['CUTOFFS'] = dict()

    # We want to ensure that the keys to the questions are integers
    for label in ['QUESTIONS', 'CUTOFFS']:
        dict_[label] = {int(x): dict_[label][x] for x in dict_[label].keys()}

    # We do some modifications on the cutoff values. Instead of None, we will simply use
    # HUGE_FLOAT and we fill up any missing cutoff values for any possible questions..
    for q in QUESTIONS_ALL:
        if q not in dict_['CUTOFFS'].keys():
            dict_['CUTOFFS'][q] = [-HUGE_FLOAT, HUGE_FLOAT]
        else:
            for i in range(2):
                if dict_['CUTOFFS'][q][i] is None:
                    dict_['CUTOFFS'][q][i] = (-1)**i * -HUGE_FLOAT

    # Enforce input requirements for optional arguments
    # such as: discounting, stationary_model, unrestricted_weights, heterogeneity,...
    check_optional_args(dict_)
    heterogeneity_preparations(dict_)

    return dict_