コード例 #1
0
def test_best_current_value_lesser_is_better():
    df = pandas.DataFrame.from_dict({
        'model_group_id': ['1', '2', '3', '1', '2'],
        'model_id': ['1', '2', '3', '4', '5'],
        'train_end_time':
        ['2011-01-01', '2011-01-01', '2011-01-01', '2012-01-01', '2012-01-01'],
        'metric': [
            'false positives@', 'false positives@', 'false positives@',
            'false positives@', 'false positives@'
        ],
        'parameter': ['100_abs', '100_abs', '100_abs', '100_abs', '100_abs'],
        'raw_value': [40, 50, 55, 60, 70],
        'dist_from_best_case': [0, 10, 5, 0, 10],
    })

    assert best_current_value(df,
                              '2011-01-01',
                              'false positives@',
                              '100_abs',
                              n=2) == ['1', '2']
    assert best_current_value(df,
                              '2012-01-01',
                              'false positives@',
                              '100_abs',
                              n=1) == ['1']
コード例 #2
0
def test_best_current_value_lesser_is_better():
    df = pd.DataFrame.from_dict(
        {
            "model_group_id": ["1", "2", "3", "1", "2"],
            "model_id": ["1", "2", "3", "4", "5"],
            "train_end_time": [
                "2011-01-01",
                "2011-01-01",
                "2011-01-01",
                "2012-01-01",
                "2012-01-01",
            ],
            "metric": [
                "false positives@",
                "false positives@",
                "false positives@",
                "false positives@",
                "false positives@",
            ],
            "parameter": ["100_abs", "100_abs", "100_abs", "100_abs", "100_abs"],
            "raw_value": [40, 50, 55, 60, 70],
            "dist_from_best_case": [0, 10, 5, 0, 10],
        }
    )

    assert best_current_value(df, "2011-01-01", "false positives@", "100_abs", n=2) == [
        "1",
        "2",
    ]
    assert best_current_value(df, "2012-01-01", "false positives@", "100_abs", n=1) == [
        "1"
    ]
コード例 #3
0
def test_best_current_value_greater_is_better():
    df = pandas.DataFrame.from_dict({
        'model_group_id': ['1', '2', '4', '1', '2', '3'],
        'model_id': ['1', '2', '3', '4', '5', '6'],
        'train_end_time': [
            '2011-01-01', '2012-01-01', '2012-01-01', '2012-01-01',
            '2012-01-01', '2012-01-01'
        ],
        'metric': [
            'precision@', 'precision@', 'precision@', 'precision@',
            'precision@', 'precision@'
        ],
        'parameter':
        ['100_abs', '100_abs', '100_abs', '100_abs', '100_abs', '100_abs'],
        'raw_value': [0.5, 0.4, 0.4, 0.6, 0.8, 0.7],
        'dist_from_best_case': [0.0, 0.1, 0.1, 0.1, 0.0, 0.0],
    })

    assert best_current_value(df, '2012-01-01', 'precision@', '100_abs',
                              n=2) == ['2', '3']
    assert best_current_value(df, '2011-01-01', 'precision@', '100_abs',
                              n=2) == ['1']
    assert best_current_value(df, '2011-01-01', 'precision@', '100_abs',
                              n=1) == ['1']
    assert best_current_value(df, '2012-01-01', 'precision@',
                              '100_abs') == ['2']
コード例 #4
0
def test_best_current_value_greater_is_better():
    df = pandas.DataFrame.from_dict({
        "model_group_id": ["1", "2", "4", "1", "2", "3"],
        "model_id": ["1", "2", "3", "4", "5", "6"],
        "train_end_time": [
            "2011-01-01",
            "2012-01-01",
            "2012-01-01",
            "2012-01-01",
            "2012-01-01",
            "2012-01-01",
        ],
        "metric": [
            "precision@",
            "precision@",
            "precision@",
            "precision@",
            "precision@",
            "precision@",
        ],
        "parameter": [
            "100_abs",
            "100_abs",
            "100_abs",
            "100_abs",
            "100_abs",
            "100_abs",
        ],
        "raw_value": [0.5, 0.4, 0.4, 0.6, 0.8, 0.7],
        "dist_from_best_case": [0.0, 0.1, 0.1, 0.1, 0.0, 0.0],
    })

    assert best_current_value(df, "2012-01-01", "precision@", "100_abs",
                              n=2) == [
                                  "2",
                                  "3",
                              ]
    assert best_current_value(df, "2011-01-01", "precision@", "100_abs",
                              n=2) == ["1"]
    assert best_current_value(df, "2011-01-01", "precision@", "100_abs",
                              n=1) == ["1"]
    assert best_current_value(df, "2012-01-01", "precision@",
                              "100_abs") == ["2"]