コード例 #1
0
def stratisfied(triangleJ, triangleI, areaI, samples=1, depth=1):
    """
    Stratisfied_simple berekent de integraal van de vormfactoren.
    depth = het aantal keer dat de driehoek wordt opgedeeld in drie, het totaal aantal samples = samples*(3**depth)
    """
    if depth == 0:
        return uniform_test2(triangleJ, triangleI, areaI, samples)
    else:
        centroidI, centroidJ = triangle_mesh.centroid(
            triangleI), triangle_mesh.centroid(triangleJ)
        I0, I1, I2 = np.array(triangleI), np.array(triangleI), np.array(
            triangleI)
        J0, J1, J2 = np.array(triangleJ), np.array(triangleJ), np.array(
            triangleJ)
        I0[0], I1[1], I2[2] = centroidI, centroidI, centroidI
        J0[0], J1[1], J2[2] = centroidJ, centroidJ, centroidJ
        return (stratisfied(J0, I0, areaI, samples, depth - 1) +
                stratisfied(J0, I1, areaI, samples, depth - 1) +
                stratisfied(J0, I2, areaI, samples, depth - 1) +
                stratisfied(J1, I0, areaI, samples, depth - 1) +
                stratisfied(J1, I1, areaI, samples, depth - 1) +
                stratisfied(J1, I2, areaI, samples, depth - 1) +
                stratisfied(J2, I0, areaI, samples, depth - 1) +
                stratisfied(J2, I1, areaI, samples, depth - 1) +
                stratisfied(J2, I2, areaI, samples, depth - 1)) / 3.0
コード例 #2
0
def uniform_cheat(triangleJ, triangleI, areaI, kdtree, samples=6):
    """
    Uniforme monte-carlo integratie van de vormfactor
    samples zijn standaard = 6
    Hoeken en visibility worden maar 1 keer berekend
    Uit tests blijkt dit toch niet zo precies :(
    """
    som = 0.0
    dist_crit = math.sqrt(areaI/(3.2*samples))
    p, q = triangle_mesh.centroid(triangleI), triangle_mesh.centroid(triangleJ)
    dist = triangle_mesh.distance(p,q)
    if dist <= dist_crit:
        return uniform(triangleJ, triangleI, kdtree, samples=6)
    angles = triangle_mesh.angle_second(triangleI, triangleJ, p, q)
    if not visibility.visible(kdtree, p,q):
        return 0.0
    som += integrand(angles[0], angles[1], triangle_mesh.distance(p,q))
    for k in range(samples-1):
        pointI = triangle_mesh.random_point2(triangleI)
        pointJ = triangle_mesh.random_point2(triangleJ)
        angles = triangle_mesh.angle_second(triangleI, triangleJ, pointI, pointJ)
        som += integrand(angles[0], angles[1], triangle_mesh.distance(pointI,pointJ))
    samples = float(samples)
    formfactor = som/samples*areaI
    return formfactor
コード例 #3
0
def cheat_integration(triangleJ, triangleI, areaI, kdtree):
    """
    Voor als de driehoeken zeer klein zijn
    """

    p, q = triangle_mesh.centroid(triangleI), triangle_mesh.centroid(triangleJ)
    angles = triangle_mesh.angle_second(triangleI, triangleJ, p, q)
    # start = time.time()
    visible = visibility.visible(kdtree, p, q)

    if visible:
        return areaI*integrand(angles[0], angles[1], triangle_mesh.distance(p, q))
    return 0.0
コード例 #4
0
def uniform_test2(triangleJ, triangleI, areaI, samples=4):
    """
    Uniforme monte-carlo integratie van de vormfactor
    samples zijn standaard = 4
    """
    if int(areaI) > samples:
        samples = int(areaI) + 1
    stopcrit = samples + 10
    dist_crit = math.sqrt(areaI / (3.2 * samples))
    centroidJ, centroidI = triangle_mesh.centroid(
        triangleJ), triangle_mesh.centroid(triangleI)
    angles = triangle_mesh.angle_second(triangleI, triangleJ, centroidI,
                                        centroidJ)
    centr_dist = triangle_mesh.distance(centroidJ, centroidI)
    som = 0.0
    formfactor = 0.0
    som += formfactors.integrand(angles[0], angles[1], centr_dist)
    counter = 1.0
    while counter < samples and stopcrit != 0:
        # print("point ", k)
        # print(triangleI)
        pointI = triangle_mesh.random_point2(triangleI)
        pointJ = triangle_mesh.random_point2(triangleJ)
        dist = triangle_mesh.distance(pointI, pointJ)
        if dist > dist_crit:
            # print(pointI,pointJ)
            # visible = visibility.visible(kdtree, pointI, pointJ)
            # print(pointI,pointJ,visible)
            # print("visible:", visible)
            if True:
                # print("checked visibility")
                angles = triangle_mesh.angle_second(triangleI, triangleJ,
                                                    pointI, pointJ)
                som += formfactors.integrand(angles[0], angles[1], dist)
            counter += 1.0
        else:
            samples += 1
            dist = centr_dist
            angles = triangle_mesh.angle_second(triangleI, triangleJ, pointI,
                                                pointJ)
            som += formfactors.integrand(angles[0], angles[1], dist)
            counter += 1.0

        stopcrit -= 1

    # print(som, samples, triangle_mesh.triangle_area_carth(triangleI))
    formfactor = som / float(counter) * areaI
    return formfactor
コード例 #5
0
def uniform(triangleJ, triangleI, areaI, kdtree, samples=4):
    """
    Uniforme monte-carlo integratie van de vormfactor
    samples zijn standaard = 4
    """
    #print("calculating formfactor")
    centroidJ, centroidI = triangle_mesh.centroid(triangleJ), triangle_mesh.centroid(triangleI)
    if normal_opt(triangleJ,triangleI,centroidJ,centroidI):
        return 0.0
    if int(areaI) > samples:
        samples = int(areaI) + 1
    dist_crit = (areaI/(3.2*samples))**0.5
    angles = triangle_mesh.angle_second(triangleI, triangleJ, centroidI, centroidJ)
    centr_dist = triangle_mesh.distance(centroidJ,centroidI)
    som = 0.0
    formfactor = 0.0
    if visibility.visible(kdtree, centroidI, centroidJ):
        som += integrand(angles[0], angles[1], centr_dist)
    else:
        return 0.0
    counter = 1.0
    while counter < samples:
        # print("point ", k)
        # print(triangleI)
        pointI = triangle_mesh.random_point2(triangleI)
        pointJ = triangle_mesh.random_point2(triangleJ)
        dist = triangle_mesh.distance(pointI,pointJ)
        if dist > dist_crit:
            # print(pointI,pointJ)
            # visible = visibility.visible(kdtree, pointI, pointJ)
            # print(pointI,pointJ,visible)
            # print("visible:", visible)
            # if visible:
                # print("checked visibility")
            angles = triangle_mesh.angle_second(triangleI, triangleJ, pointI, pointJ)
            som += integrand(angles[0], angles[1], dist)
            counter +=1.0
        else:
            samples += 1
            dist = centr_dist
            angles = triangle_mesh.angle_second(triangleI, triangleJ, pointI, pointJ)
            som += integrand(angles[0], angles[1], dist)
            counter +=1.0
    # print(som, samples, triangle_mesh.triangle_area_carth(triangleI))
    formfactor = som/float(counter)*areaI
    return formfactor
コード例 #6
0
def uniform_cheat(triangleJ, triangleI, samples=6):
    """
    Uniforme monte-carlo integratie van de vormfactor
    samples zijn standaard = 6
    Hoeken en visibility worden maar 1 keer berekend
    """
    som = 0.0
    p, q = triangle_mesh.centroid(triangleI), triangle_mesh.centroid(triangleJ)
    angles = triangle_mesh.angle_second(triangleI, triangleJ, p, q)
    som += formfactors.integrand(angles[0], angles[1],
                                 triangle_mesh.distance(p, q))
    for k in range(samples - 1):
        pointI = triangle_mesh.random_point(triangleI)
        pointJ = triangle_mesh.random_point(triangleJ)
        som += formfactors.integrand(angles[0], angles[1],
                                     triangle_mesh.distance(pointI, pointJ))
    samples = float(samples)
    area = triangle_mesh.triangle_area_carth(triangleI)
    formfactor = som / samples * area
    return formfactor