コード例 #1
0
ファイル: test_lsf.py プロジェクト: ibutsky/trident
def test_lsf_errors():
    """
    Test that LSF raises errors correctly
    """
    with pytest.raises(RuntimeError):
        LSF()
    with pytest.raises(RuntimeError):
        LSF(filename='NOTAFILE.txt')
コード例 #2
0
ファイル: test_lsf.py プロジェクト: ibutsky/trident
def test_gaussian_lsf():
    """
    Create an LSF object with a gaussian function and assure it works OK
    """
    lsf = LSF(function='gaussian', width=5)
    assert isinstance(lsf.kernel, astropy.convolution.kernels.Gaussian1DKernel)
    assert len(lsf.kernel.array) == 41
    assert lsf.width == 5
    print(lsf)
コード例 #3
0
ファイル: test_lsf.py プロジェクト: ibutsky/trident
def test_boxcar_lsf():
    """
    Create an LSF object with a boxcar function and assure it works OK
    """
    lsf = LSF(function='boxcar', width=5)
    assert isinstance(lsf.kernel, np.ndarray)
    assert len(lsf.kernel) == 5
    assert lsf.width == 5
    print(lsf)
コード例 #4
0
ファイル: test_lsf.py プロジェクト: ibutsky/trident
def test_lsf_from_filename():
    """
    Create an LSF object from filename and assure that it works OK
    """
    lsf = LSF(filename='avg_COS.txt')
    assert isinstance(lsf.kernel, np.ndarray)
    assert len(lsf.kernel) > 0
    assert lsf.width == len(lsf.kernel)
    print(lsf)
コード例 #5
0
    def apply_lsf(self, function=None, width=None, filename=None):
        """
        Postprocess a spectrum to apply a line spread function.
        If the SpectrumGenerator already has an LSF_kernel set, it will
        be used when no keywords are supplied.  Otherwise, the user can
        specify a filename of a user-defined kernel or a function+width
        for a kernel.  Valid functions are: "boxcar" and "gaussian".

        For more information, see :class:`~trident.LSF` and
        :class:`~trident.Instrument`.

        **Parameters**

        :function: string, optional

            Desired functional form for the applied LSF kernel.
            Valid options are currently "boxcar" or "gaussian"
            Default: None

        :width: int, optional

            Width of the desired LSF kernel in bin elements
            Default: None

        :filename: string, optional

            The filename of the user-supplied kernel for applying the LSF
            Default: None

        **Example**

        Make a one zone ray and generate a COS spectrum for it.  Apply the
        COS line spread function to it.

        >>> import trident
        >>> ray = trident.make_onezone_ray()
        >>> sg = trident.SpectrumGenerator('COS')
        >>> sg.make_spectrum(ray)
        >>> sg.apply_lsf()
        >>> sg.plot_spectrum('spec_lsf_corrected.png')

        Make a one zone ray and generate a spectrum with bin width = 1 angstrom.
        Apply a boxcar LSF to it with width 50 angstroms.

        >>> import trident
        >>> ray = trident.make_onezone_ray()
        >>> sg = trident.SpectrumGenerator(lambda_min=1100, lambda_max=1200, dlambda=1)
        >>> sg.make_spectrum(ray)
        >>> sg.apply_lsf(function='boxcar', width=50)
        >>> sg.plot_spectrum('spec_lsf_corrected.png')
        """
        # if nothing is specified, then use the Instrument-defined kernel
        if function is None and width is None and filename is None:
            if self.instrument.lsf_kernel is None:
                raise RuntimeError("To apply a line spread function, you "
                                   "must specify one or use an instrument "
                                   "where one is defined.")
            else:
                mylog.info("Applying default line spread function for %s." % \
                       self.instrument.name)
                lsf = LSF(filename=self.instrument.lsf_kernel)
        else:
            mylog.info("Applying specified line spread function.")
            lsf = LSF(function=function, width=width, filename=filename)
        from astropy.convolution import convolve
        self.flux_field = convolve(self.flux_field, lsf.kernel)

        # Negative fluxes don't make sense, so clip
        np.clip(self.flux_field, 0, np.inf, out=self.flux_field)