def test_enzo_small_simple(self): """ This is an answer test, which compares the results of this test against answers generated from a previous version of the code. This test generates a COS spectrum from a single Enzo dataset using a simple ray and compare the ray and spectral output data against a known answer. """ # Set the dataset filename, load it into yt and define the trajectory # of the LightRay to cross the box from one corner to the other. ds = load(os.path.join(enzo_small, 'RD0009/RD0009')) ray_start = ds.domain_left_edge ray_end = ds.domain_right_edge # Make a LightRay object including all necessary fields so you can add # all H, C, N, O, and Mg fields to the resulting spectrum from your dataset. # Save LightRay to ray.h5 and use it locally as ray object. ray_fn = 'enzo_small_simple_ray.h5' ray = make_simple_ray(ds, start_position=ray_start, end_position=ray_end, data_filename=ray_fn, lines=['H', 'C', 'N', 'O', 'Mg'], ftype='gas') # Now use the ray object to actually generate an absorption spectrum # Use the settings (spectral range, LSF, and spectral resolution) for COS # And save it as an output hdf5 file and plot it to an image. sg = SpectrumGenerator('COS') sg.make_spectrum(ray, lines=['H', 'C', 'N', 'O', 'Mg']) raw_file = 'enzo_small_simple_spec_raw.h5' raw_file_compare = os.path.join(test_results_dir, raw_file) sg.save_spectrum(raw_file) sg.plot_spectrum('enzo_small_simple_spec_raw.png') # "Final" spectrum with added quasar, MW background, applied line-spread # function, and added gaussian noise (SNR=30) # Save as a text file and plot it to an image. sg.add_qso_spectrum() sg.add_milky_way_foreground() sg.apply_lsf() sg.add_gaussian_noise(30, seed=1) final_file = 'enzo_small_simple_spec_final.h5' final_file_compare = os.path.join(test_results_dir, final_file) sg.save_spectrum(final_file) sg.plot_spectrum('enzo_small_simple_spec_final.png') if generate_results: os.rename(raw_file, raw_file_compare) os.rename(final_file, final_file_compare) else: old_spec = h5py.File(raw_file_compare, 'r') new_spec = h5py.File(raw_file, 'r') for key in old_spec.keys(): assert_almost_equal(new_spec[key].value, old_spec[key].value, \ decimal=err_precision, err_msg='Raw spectrum array does not match '+\ 'for enzo_small_simple answer test') old_spec.close() new_spec.close() old_spec = h5py.File(final_file_compare, 'r') new_spec = h5py.File(final_file, 'r') for key in old_spec.keys(): assert_almost_equal(new_spec[key].value, old_spec[key].value, \ decimal=err_precision, err_msg='Final spectrum array does not match '+\ 'for enzo_small_simple answer test') old_spec.close() new_spec.close()
def test_enzo_small_compound(self): """ This is an answer test, which compares the results of this test against answers generated from a previous version of the code. This test generates a COS spectrum from a single Enzo dataset using a compound ray and compare the ray and spectral output data against a known answer. """ # Set the dataset filename, the redshift range to be covered, and the # ions in which we're interested, and give the random number generator # a seed (for determining the ray trajectory). Use these to create a # compound ray spanning multiple datasets to cover the desired redshift # range. fn = os.path.join(enzo_small, 'AMRCosmology.enzo') redshift_start = 0.00 redshift_end = 0.015 lines = ['H', 'C', 'N', 'O', 'Mg'] seed = 1 ray_fn = 'enzo_small_compound_ray.h5' ray = make_compound_ray(fn, 'Enzo', redshift_start, redshift_end, lines=lines, seed=seed, ftype='gas', data_filename=ray_fn) # Now use the ray object to actually generate an absorption spectrum # Use the settings (spectral range, LSF, and spectral resolution) for COS # And save it as an output hdf5 file and plot it to an image. sg = SpectrumGenerator('COS') sg.make_spectrum(ray, lines=lines) raw_file = 'enzo_small_compound_spec_raw.h5' raw_file_compare = os.path.join(test_results_dir, raw_file) sg.save_spectrum(raw_file) sg.plot_spectrum('enzo_small_compound_spec_raw.png') # "Final" spectrum with added quasar, MW background, applied line-spread # function, and added gaussian noise (SNR=30) # Save as a text file and plot it to an image. sg.add_qso_spectrum() sg.add_milky_way_foreground() sg.apply_lsf() sg.add_gaussian_noise(30, seed=1) final_file = 'enzo_small_compound_spec_final.h5' sg.save_spectrum(final_file) final_file_compare = os.path.join(test_results_dir, final_file) sg.plot_spectrum('enzo_small_compound_spec_final.png') if generate_results: os.rename(raw_file, raw_file_compare) os.rename(final_file, final_file_compare) else: old_spec = h5py.File(raw_file_compare, 'r') new_spec = h5py.File(raw_file, 'r') for key in old_spec.keys(): assert_almost_equal(new_spec[key].value, old_spec[key].value, \ decimal=err_precision, err_msg='Raw spectrum array does not match '+\ 'for enzo_small_compound answer test') old_spec.close() new_spec.close() old_spec = h5py.File(final_file_compare, 'r') new_spec = h5py.File(final_file, 'r') for key in old_spec.keys(): assert_almost_equal(new_spec[key].value, old_spec[key].value, \ decimal=err_precision, err_msg='Final spectrum array does not match '+\ 'for enzo_small_compound answer test') old_spec.close() new_spec.close()