コード例 #1
0
def compilable_transformation_dictionary(feature_var, sentinel_im, geometry_transformation=None):
    t_dict=\
    {'feature':{'object':feature_var}, \
    'feature_id':{'function':(lambda y: y.get_id() if type(y)!=tridy.Feature else y.get_data()['pixel_valu']),'parameters':['feature']},\
    'feature_data':{'function':(lambda y: y.get_data()),'parameters':['feature']},\
    'feature_geometry':{'function':(lambda y: y.get_geometry()),'parameters':['feature']},\
    'sentinel_im':{'object': sentinel_im}, \
    'im_band2_cropped':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['im_band2'].clip_by_shape(z))    ),'parameters':['sentinel_im','feature_geometry']},\
    'im_band4_cropped':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['im_band4'].clip_by_shape(z))    ),'parameters':['sentinel_im','feature_geometry']},\
    'im_band8_cropped':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['im_band8'].clip_by_shape(z))    ),'parameters':['sentinel_im','feature_geometry']},\
    'cri2': {'function':(lambda y,  z:  Imagee((1 / (y.get_data()/10000) ) - (1 / (z.get_data()/10000) ),  y.get_metadata() ) ),'parameters':['im_band2_cropped', 'im_band8_cropped']},\
    'msr': {'function':(lambda x,  y,  z:  Imagee( (z.get_data()-x.get_data())/(y.get_data()-x.get_data()) ,  y.get_metadata() ) ),'parameters':['im_band2_cropped', 'im_band4_cropped', 'im_band8_cropped']},\
    'geometry_transformation':{'object': geometry_transformation}, \
    'transformed_geometry':{'function':(lambda y,  z:  transform_wkt_geometry(y,z) if z!=None else y ),'parameters':['feature_geometry','geometry_transformation']},\
    'result_feature':{'function':(lambda v,  w,  x,  y,  z:  FeatureWithID(data={**v, **{'cri2':y.get_statistics()}, **{'msr':z.get_statistics()}}, geom=w, id=x)   ),'parameters':['feature_data','transformed_geometry','feature_id','cri2', 'msr']},\
    }
    return t_dict
コード例 #2
0
def get_twi(im_object):
    with TemporaryDirectory() as tempdir:
        im_object.export_as_tif('%s/dem.tif' % tempdir)
        routing.fill_pits(('%s/dem.tif' % tempdir, 1), '%s/cdem.tif' % tempdir)
        routing.flow_dir_mfd(('%s/cdem.tif' % tempdir, 1),
                             '%s/dir.tif' % tempdir)
        routing.flow_accumulation_mfd(('%s/dir.tif' % tempdir, 1),
                                      '%s/twi.tif' % tempdir)
        ds = gdal.Open('%s/twi.tif' % tempdir)
        metadata_dict = im_object.get_metadata()
        twi = Imagee(np.array(ds.GetRasterBand(1).ReadAsArray()),
                     metadata_dict)
        return twi
コード例 #3
0
def compilable_transformation_dictionary(feature_var, feature_geomorpho_var,
                                         feature_soils):
    t_dict=\
    {'feature':{'object':feature_var}, \
    'feature_id':{'function':(lambda y: y.get_id() if type(y)!=tridy.Feature else 1),'parameters':['feature']},\
    'feature_data':{'function':(lambda y: y.get_data()),'parameters':['feature']},\
    'feature_geometry':{'function':(lambda y: y.get_geometry()),'parameters':['feature']},\
    'feature_geomorpho':{'object': feature_geomorpho_var}, \
    'feature_dem':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['dem'].clip_by_shape(z))    ),'parameters':['feature_geomorpho','feature_geometry']},\
    'feature_slope':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['slope'].clip_by_shape(z))    ),'parameters':['feature_geomorpho','feature_geometry']},\
    'feature_orientation':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['orientation'].clip_by_shape(z))    ),'parameters':['feature_geomorpho','feature_geometry']},\
    'feature_twi':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['twi'].clip_by_shape(z))    ),'parameters':['feature_geomorpho','feature_geometry']},\
    'feature_soils':{'object': feature_soils}, \
    'feature_aglim1':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['aglim1'].clip_by_shape(z))    ),'parameters':['feature_soils','feature_geometry']},\
    'feature_aglim2':{'function':(lambda y,  z:  Imagee(*y.get_raster_map()['aglim2'].clip_by_shape(z))    ),'parameters':['feature_soils','feature_geometry']},\
    'result_feature':{'function':(lambda r, s, t, u, v,  w,  x,  y,  z:  FeatureWithRasterMap(data=r, geom=s,id=t,raster_map={'dem':u,'slope':v,'orientation':w,'twi':x,'aglim1':y,'aglim2':z})   ),'parameters':['feature_data','feature_geometry','feature_id','feature_dem', 'feature_slope', 'feature_orientation', 'feature_twi', 'feature_aglim1', 'feature_aglim2']},\
    }
    return t_dict
コード例 #4
0
grid_clip = Grid(
    np.array(grid.get_gridorigin()) +
    np.array(tuple(grid.find_index(
        (envelope[0], envelope[3])))) * np.array(grid.get_gridstepsize()),
    (metadata_dict['affine_transformation'][1],
     metadata_dict['affine_transformation'][5]))

# %%
clip_metadata_dict = {}
clip_metadata_dict[
    'affine_transformation'] = grid_clip.get_affinetransformation()
clip_metadata_dict['nodata'] = float(np.min(a)) if np.min(a) < 0 else np.nan
clip_metadata_dict['proj_wkt'] = etrs3035_sr.ExportToWkt()

# %%
big_im = Imagee(a, clip_metadata_dict)

# %%
big_twi = get_twi(big_im)
big_orientation = Imagee(*big_im.calculate_azimuth())
big_slope = Imagee(*big_im.calculate_slope())

# %%
feature_geomorpho = FeatureWithRasterMap(
    data={},
    geom=('POLYGON ((%d %d, %d %d, %d %d, %d %d, %d %d))' %
          (envelope[0], envelope[2], envelope[0], envelope[3], envelope[1],
           envelope[3], envelope[1], envelope[2], envelope[0], envelope[2])),
    id=1,
    raster_map={
        'dem': big_im,
def geomorphology_transformations(ogr_olu_object, attributes_table,
                                  attributes2object_table, attributes_fid,
                                  dem_im, slope_im, aspect_im, twi_im):
    o_dict=\
    {
    'feature':{'object':ogr_olu_object},\
    'feature_json':{'function':(lambda y: json.loads(y.ExportToJson())),'parameters':['feature']},\
    'feature_geometry':{'function':(lambda y: y.GetGeometryRef().ExportToWkt() ),'parameters':['feature']},\
    'feature_id':{'function':(lambda y: int(y['properties']['fid'])),'parameters':['feature_json']},\
    'attributes_table':{'object':attributes_table},\
    'attributes2object_table':{'object':attributes2object_table},\
    'attributes_fid':{'object':attributes_fid},\
    'dem_image':{'object':dem_im},\
    'slope_image':{'object':slope_im},\
    'azimuth_image':{'object':aspect_im},\
    'twi_image':{'object':twi_im},\
    'attribute_properties':{'function':(lambda u, v, w, x,y,z: {**{'fid':u},**{'dataset_id':5},**{'atts':{'elevation':Imagee(*w.clip_by_shape(v)).get_statistics()['mean'], 'slope':Imagee(*x.clip_by_shape(v)).get_statistics()['mean'], 'azimuth':Imagee(*y.clip_by_shape(v)).get_statistics()['mean'], 'twi':Imagee(*z.clip_by_shape(v)).get_statistics()['mean']} } }),'parameters':['attributes_fid','feature_geometry','dem_image', 'slope_image', 'azimuth_image', 'twi_image']},
    'attributes_insert_statement':{'function':(lambda x, y,z: "INSERT INTO %s (fid,atts,dataset_fid) VALUES (%s,('%s'::json),%s)" % (x,y,json.dumps(z['atts']),z['dataset_id']) ),'parameters':['attributes_table','attributes_fid','attribute_properties']},\
    'attributes2object_insert_statement':{'function':(lambda x,y,z: "INSERT INTO %s (object_fid,atts_fid,atts_origin) VALUES (%s,%s,4)" % (z,x,y) ),'parameters':['feature_id','attributes_fid','attributes2object_table']},\
    'two_insert_statements':{'function':(lambda y,z: [y,z]),'parameters':['attributes_insert_statement','attributes2object_insert_statement']},\
    }
    return o_dict
コード例 #6
0
size=tuple(np.array(grid.find_index((geom_utm_envelope[1],geom_utm_envelope[2])))-np.array(grid.find_index((geom_utm_envelope[0],geom_utm_envelope[3]))))+np.array([1,1])

# %%
a=np.array(ds_b2.GetRasterBand(1).ReadAsArray(xoff=int(origin[0]),yoff=int(origin[1]),win_xsize=int(size[0]),win_ysize=int(size[1])))

# %%
grid_clip=Grid(np.array(grid.get_gridorigin())+np.array(tuple(grid.find_index((geom_utm_envelope[0],geom_utm_envelope[3]))))*np.array(grid.get_gridstepsize()),(metadata_dict['affine_transformation'][1],metadata_dict['affine_transformation'][5]))

# %%
clip_metadata_dict={}
clip_metadata_dict['affine_transformation']=grid_clip.get_affinetransformation()
clip_metadata_dict['nodata']=float(np.min(a)) if np.min(a)<0 else np.nan
clip_metadata_dict['proj_wkt']=utm32635_sr.ExportToWkt()

# %%
im=Imagee(a,clip_metadata_dict)

# %%
im.export_as_tif('vyrez.tif')

# %%
a=np.array(ds_b4.GetRasterBand(1).ReadAsArray(xoff=int(origin[0]),yoff=int(origin[1]),win_xsize=int(size[0]),win_ysize=int(size[1])))
im_b4=Imagee(a,clip_metadata_dict)
im_b4.export_as_tif('vyrez_b4.tif')

# %%
a=np.array(ds_b8.GetRasterBand(1).ReadAsArray(xoff=int(origin[0]),yoff=int(origin[1]),win_xsize=int(size[0]),win_ysize=int(size[1])))
im_b8=Imagee(a,clip_metadata_dict)
im_b8.export_as_tif('vyrez_b8.tif')

# %%
                      data_source=eudem_cz_ds,
                      subgeoconcepts=[])
eudem_cz.set_raster_output_backend(
    '',
    eudem_cz.get_data_source().get_attributes()['local'])

f = admunit_cz.read_features_from_table_by_sqlcondition('id=538493', 1)
ff = next(f)[0]
ff.transform_geometry(sjtsk5514_to_wgs84)
ff.transform_geometry(wgs84_to_etrs3035)

bbox = ogr.CreateGeometryFromWkt(ff.get_geometry()).Buffer(10).GetEnvelope()

im = eudem_cz.read_raster_output_backend(1,
                                         (bbox[0], bbox[3], bbox[1], bbox[2]))
im_slope = Imagee(*im.calculate_slope())
im_azimuth = Imagee(*im.calculate_azimuth())
im_twi = get_twi(im)

olu_atts_fid_maxvalue = dbs_olu.execute(
    'SELECT max(fid) FROM olu2.olu_attribute_set')[0][0]
dbs_olu.execute("select setval('olu2.olu_attributes_fid_seq', %s)" %
                olu_atts_fid_maxvalue)
olu_atts_id_gen = sequence_generator(
    dbs_olu.execute('SELECT last_value FROM olu2.olu_attributes_fid_seq')[0]
    [0])

dbs_olu_ogr_conn = dbs_olu.create_ogr_connection()

lyr = dbs_olu_ogr_conn.GetLayerByName('olu_object.538493')
コード例 #8
0
     np.array([-500, 500, 500, -500]))
 cci__im = cci_africa.read_raster_output_backend(1, bbox_r3857)
 colnames = ['id', 'lc_class', 'frequency']
 df = pd.DataFrame(columns=colnames)
 lyr.ResetReading()
 bad_list = []
 for c in range(lyr.GetFeatureCount()):
     lyr_f = lyr.GetNextFeature()
     row_d = {}
     if lyr_f.GetGeometryRef().IsEmpty():
         continue
     try:
         geom = lyr_f.GetGeometryRef()
         geom.Transform(wgs84_to_mercator3857)
         statistics = Imagee(
             *cci__im.clip_by_shape(geom.ExportToWkt())).get_statistics(
                 categoric=True, percentage=True, full=True)
         row_d['id'] = lyr_f.GetFieldAsInteger64(0)
         row_d['lc_class'] = statistics['mode']
         row_d['frequency'] = statistics['frequencies'][str(
             statistics['mode'])]
         df = df.append(row_d, ignore_index=True)
     except:
         bad_list.append(lyr_f.GetFieldAsInteger64(0))
 df.set_index(df.id, inplace=True)
 dbs.execute("create table %s.atts_%s () inherits (%s) " %
             (country.lower(), table, olu_attribute_set_table))
 for index, row in df.iterrows():
     atts_fid = next(olu_atts_id_gen)
     dbs.execute(
         'insert into %s.atts_%s (fid,atts,dataset_fid,clc_id) select %d as fid, \'{"frequency":%s}\'::jsonb as atts, %d as dataset_fid, %s as clc_id '
コード例 #9
0
        tuple(
            grid.find_index((feature_geometry3035.GetEnvelope()[0],
                             feature_geometry3035.GetEnvelope()[3])))) *
    np.array(grid.get_gridstepsize()),
    (metadata_dict['affine_transformation'][1],
     metadata_dict['affine_transformation'][5]))

# %%
clip_metadata_dict = {}
clip_metadata_dict[
    'affine_transformation'] = grid_clip.get_affinetransformation()
clip_metadata_dict['nodata'] = float(np.min(a)) if np.min(a) < 0 else np.nan
clip_metadata_dict['proj_wkt'] = etrs3035_sr.ExportToWkt()

# %%
im = Imagee(a, clip_metadata_dict)

# %%
im.export_as_tif('Mnichovice.tif')

# %%
G = apply_function(compilable_tree_dictionary(admunit_cz), 'admunit__tree')

# %%
list(find_neighbors_level(G.reverse(), str(f.get_data()['Kod']), 4))

# %%
features_lpis = lpis_cz.get_subgeoconcept_by_name(
    '697541').read_features_from_table(1)

# %%
コード例 #10
0
     lyr.GetExtent()[1],
     lyr.GetExtent()[2]
 ]
 cci20__im = cci20.read_raster_output_backend(1, bbox_r)
 colnames = ['id', 'lc_class', 'frequency']
 df = pd.DataFrame(columns=colnames)
 lyr.ResetReading()
 bad_list = []
 for c in range(lyr.GetFeatureCount()):
     lyr_f = lyr.GetNextFeature()
     row_d = {}
     if lyr_f.GetGeometryRef().IsEmpty():
         continue
     try:
         statistics = Imagee(*cci20__im.clip_by_shape(
             lyr_f.GetGeometryRef().ExportToWkt())).get_statistics(
                 categoric=True, percentage=True, full=True)
         row_d['id'] = lyr_f.GetFieldAsInteger64(0)
         row_d['lc_class'] = statistics['mode']
         row_d['frequency'] = statistics['frequencies'][str(
             statistics['mode'])]
         df = df.append(row_d, ignore_index=True)
     except:
         bad_list.append(lyr_f.GetFieldAsInteger64(0))
 df.set_index(df.id, inplace=True)
 all_args = ''
 for index, row in df.iterrows():
     args = '),('.join([
         str(int(index)) + ',' + str(int(row['lc_class'])) + ',' +
         str(float(row['frequency']))
     ])
コード例 #11
0
        tuple(
            grid.find_index((feature_geometry_buffer.GetEnvelope()[0],
                             feature_geometry_buffer.GetEnvelope()[3])))) *
    np.array(grid.get_gridstepsize()),
    (metadata_dict['affine_transformation'][1],
     metadata_dict['affine_transformation'][5]))

# %%
clip_metadata_dict = {}
clip_metadata_dict[
    'affine_transformation'] = grid_clip.get_affinetransformation()
clip_metadata_dict['nodata'] = float(np.min(a)) if np.min(a) < 0 else np.nan
clip_metadata_dict['proj_wkt'] = etrs3035_sr.ExportToWkt()

# %%
im = Imagee(a, clip_metadata_dict)

# %%
im.export_as_tif('pole_s_bufrem500.tif')

# %%
im_twi = get_twi(im)

# %%
im_twi.export_as_tif('akumulace_vody_na_poli_s_bufrem500.tif')

# %%
cropped_im = Imagee(*im.clip_by_shape(feature_geometry.ExportToWkt()))

# %%
plt.imshow(cropped_im.get_data(),