コード例 #1
0
    def test_step_both(self):
        # Create two instances and send different actions to them.
        # Verify that both go towards their target
        robot1 = SimFinger(finger_type="trifingerpro")
        robot2 = SimFinger(finger_type="trifingerpro")

        start_position = np.array([0.0, 0.7, -1.5] * 3)

        robot1.reset_finger_positions_and_velocities(start_position)
        robot2.reset_finger_positions_and_velocities(start_position)

        action1 = robot1.Action(position=[0.5, 0.7, -1.5] * 3)
        action2 = robot2.Action(position=[-0.1, 0.7, -1.5] * 3)

        for i in range(1000):
            t1 = robot1.append_desired_action(action1)
            t2 = robot2.append_desired_action(action2)
            obs1 = robot1.get_observation(t1)
            obs2 = robot2.get_observation(t2)

            if i > 1:
                self.assertTrue((obs2.position != obs1.position).any())

        self.assertLess(np.linalg.norm(action1.position - obs1.position), 0.1)
        self.assertLess(np.linalg.norm(action2.position - obs2.position), 0.1)
コード例 #2
0
class TriFingerPush(gym.Env):
    """A gym environment to enable training on any of the valid robots,
    real or simulated, for the task of pushing.
    """
    def __init__(
        self,
        control_rate_s,
        finger_type,
        enable_visualization,
    ):
        """Intializes the constituents of the pushing environment.

        Constructor sets up the finger robot depending on the finger type,
        sets up the observation and action spaces, smoothing for
        reducing jitter on the robot, and provides for a way to synchronize
        robots being trained independently.


        Args:
            control_rate_s (float): the rate (in seconds) at which step method of the env
                will run. The actual robot controller may run at a higher rate,
                so this is used to compute the number of robot control updates
                per environment step.
            finger_type (string): Name of the finger type.  In order to get
                a list of the valid finger types, call
                :meth:`.finger_types_data.get_valid_finger_types`
            enable_visualization (bool): if the simulation env is to be
                visualized
        """

        #: an instance of the simulated robot depending on the desired
        #: robot type
        self.finger = SimFinger(
            finger_type=finger_type,
            enable_visualization=enable_visualization,
        )

        self.num_fingers = finger_types_data.get_number_of_fingers(finger_type)

        #: the number of times the same action is to be applied to
        #: the robot in one step.
        self.steps_per_control = int(
            round(control_rate_s / self.finger.time_step_s))
        assert (abs(control_rate_s -
                    self.steps_per_control * self.finger.time_step_s) <=
                0.000001)

        #: the types of observations that should be a part of the environment's
        #: observed state
        self.observations_keys = [
            "joint_positions",
            "joint_velocities",
            "action_joint_positions",
            "goal_position",
            "object_position",
        ]
        #: the size of each of the observation type that is part of the
        #: observation keys (in the same order)
        self.observations_sizes = [
            3 * self.num_fingers,
            3 * self.num_fingers,
            3 * self.num_fingers,
            3,
            3,
        ]

        # sets up the observation and action spaces for the environment,
        # unscaled spaces have the custom bounds set up for each observation
        # or action type, whereas all the values in the observation and action
        # spaces lie between 1 and -1
        self.spaces = FingerSpaces(
            num_fingers=self.num_fingers,
            observations_keys=self.observations_keys,
            observations_sizes=self.observations_sizes,
            separate_goals=False,
        )

        self.unscaled_observation_space = (
            self.spaces.get_unscaled_observation_space())
        self.unscaled_action_space = self.spaces.get_unscaled_action_space()

        self.observation_space = self.spaces.get_scaled_observation_space()
        self.action_space = self.spaces.get_scaled_action_space()

        #: a logger to enable logging of observations if desired
        self.logger = DataLogger()

        #: the object that has to be pushed
        self.block = collision_objects.Block()

        #: a marker to visualize where the target goal position for the episode
        #: is
        self.goal_marker = visual_objects.Marker(
            number_of_goals=1,
            goal_size=0.0325,
            initial_position=[0.19, 0.08, 0.0425],
        )

        self.reset()

    def _compute_reward(self, object_position, goal):
        """
        The reward function of the environment

        Args:
            observation (list): the observation at the
                current step
            goal (list): the desired goal for the episode

        Returns:
            the reward, and the done signal
        """
        done = False
        dist = utils.compute_distance(object_position, goal)
        reward = -dist
        done = False
        return reward, done

    def _get_state(self, observation, action, log_observation=False):
        """
        Get the current observation from the env for the agent

        Args:
            log_observation (bool): specify whether you want to
                log the observation

        Returns:
            observation (list): comprising of the observations corresponding
                to the key values in the observation_keys
        """
        joint_positions = observation.position
        joint_velocities = observation.velocity
        tip_positions = self.finger.pinocchio_utils.forward_kinematics(
            joint_positions)
        end_effector_position = np.concatenate(tip_positions)
        flat_goals = np.concatenate([self.goal] * self.num_fingers)

        if self.num_fingers == 1:
            flat_goals = self.goal

        end_effector_to_goal = list(
            np.subtract(flat_goals, end_effector_position))

        # populate this observation dict from which you can select which
        # observation types to finally choose depending on the keys
        # used for constructing the observation space of the environment
        observation_dict = {}
        observation_dict["joint_positions"] = joint_positions
        observation_dict["joint_velocities"] = joint_velocities
        observation_dict["end_effector_position"] = end_effector_position
        observation_dict["end_effector_to_goal"] = end_effector_to_goal
        observation_dict["goal_position"] = self.goal
        observation_dict["object_position"], _ = self.block.get_state()
        observation_dict["action_joint_positions"] = action

        # returns only the observations corresponding to the keys that were
        # used for constructing the observation space
        if log_observation:
            self.logger.append(
                observation_dict["joint_positions"],
                observation_dict["end_effector_position"],
                time.time(),
            )

        observation = [
            v for key in self.spaces.observations_keys
            for v in observation_dict[key]
        ]

        return observation

    def step(self, action):
        """
        The env step method

        Args:
            action (list): the joint positions that have to be achieved

        Returns:
            the observation scaled to lie between [-1;1], the reward,
            the done signal, and info on if the agent was successful at
            the current step
        """
        # unscales the action to the ranges of the action space of the
        # environment explicitly (as the prediction from the network
        # lies in the range [-1;1])
        unscaled_action = utils.unscale(action, self.unscaled_action_space)

        # this is the control loop to send the actions for a few timesteps
        # which depends on the actual control rate
        finger_action = self.finger.Action(position=unscaled_action)
        state = None
        for _ in range(self.steps_per_control):
            t = self.finger.append_desired_action(finger_action)
            observation = self.finger.get_observation(t)
            if state is None:
                state = self._get_state(observation, unscaled_action, True)

        key_observation = state[self.spaces.key_to_index["object_position"]]

        reward, done = self._compute_reward(key_observation, self.goal)
        info = {"is_success": np.float32(done)}

        scaled_observation = utils.scale(state,
                                         self.unscaled_observation_space)
        print("reward", reward)

        return scaled_observation, reward, done, info

    def reset(self):
        """
        Episode reset

        Returns:
            the scaled to [-1;1] observation from the env after the reset
        """
        # resets the finger to a random position
        action = sample.feasible_random_joint_positions_for_reaching(
            self.finger, self.spaces.action_bounds)
        observation = self.finger.reset_finger_positions_and_velocities(action)

        #: the episode target for the agent which is sampled randomly
        #: for each episode
        self.goal = sample.random_position_in_arena(height_limits=0.0425)

        #: the position from which the object is initialized at the
        #: beginning of each episode
        self.block_position = sample.random_position_in_arena(
            height_limits=0.0425)

        self.goal_marker.set_state([self.goal])
        self.block.set_state(self.block_position, [0, 0, 0, 1])

        # logs relevant information for replayability
        self.logger.new_episode(self.block_position, self.goal)

        return utils.scale(
            self._get_state(observation, action, True),
            self.unscaled_observation_space,
        )
コード例 #3
0
class TestRobotEquivalentInterface(unittest.TestCase):
    """
    Test the methods of SimFinger that provide an interface equivalent to the
    RobotFrontend of robot_interfaces.
    """
    def setUp(self):
        self.finger = SimFinger(
            finger_type="fingerone",
            time_step=0.001,
            enable_visualization=False,
        )

        self.start_position = [0, -0.7, -1.5]
        self.finger.reset_finger_positions_and_velocities(self.start_position)

    def tearDown(self):
        # destroy the simulation to ensure that the next test starts with a
        # clean state
        del self.finger

    def test_timing_action_t_vs_observation_t(self):
        """Verify that observation_t is really not affected by action_t."""
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs = self.finger.get_observation(t)

        # as obs_t is from just before action_t is applied, the position should
        # not yet have changed
        np.testing.assert_array_equal(self.start_position, obs.position)

        # after applying another action (even with zero torque), we should see
        # the effect
        t = self.finger.append_desired_action(self.finger.Action())
        obs = self.finger.get_observation(t)
        # new position should be less, as negative torque is applied
        np.testing.assert_array_less(obs.position, self.start_position)

    def test_timing_action_t_vs_observation_tplus1(self):
        """Verify that observation_{t+1} is affected by action_t."""
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs = self.finger.get_observation(t + 1)

        # new position should be less, as negative torque is applied
        np.testing.assert_array_less(obs.position, self.start_position)

    def test_timing_observation_t_vs_tplus1(self):
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs_t = self.finger.get_observation(t)
        obs_tplus1 = self.finger.get_observation(t + 1)

        # newer position should be lesser, as negative torque is applied
        np.testing.assert_array_less(obs_tplus1.position, obs_t.position)

    def test_timing_observation_t_multiple_times(self):
        """
        Verify that calling get_observation(t) multiple times always gives same
        result.
        """
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs_t1 = self.finger.get_observation(t)

        # observation should not change when calling multiple times with same t
        for i in range(10):
            obs_ti = self.finger.get_observation(t)
            np.testing.assert_array_equal(obs_t1.position, obs_ti.position)
            np.testing.assert_array_equal(obs_t1.velocity, obs_ti.velocity)
            np.testing.assert_array_equal(obs_t1.torque, obs_ti.torque)
            np.testing.assert_array_equal(obs_t1.tip_force, obs_ti.tip_force)

    def test_timing_observation_tplus1_multiple_times(self):
        """
        Verify that calling get_observation(t + 1) multiple times always gives
        same result.
        """
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs_t1 = self.finger.get_observation(t + 1)

        # observation should not change when calling multiple times with same t
        for i in range(10):
            obs_ti = self.finger.get_observation(t + 1)
            np.testing.assert_array_equal(obs_t1.position, obs_ti.position)
            np.testing.assert_array_equal(obs_t1.velocity, obs_ti.velocity)
            np.testing.assert_array_equal(obs_t1.torque, obs_ti.torque)
            np.testing.assert_array_equal(obs_t1.tip_force, obs_ti.tip_force)

    def test_exception_on_old_t(self):
        """Verify that calling get_observation with invalid t raises error."""
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_observation(-1)

        # append two actions
        t1 = self.finger.append_desired_action(self.finger.Action())
        t2 = self.finger.append_desired_action(self.finger.Action())

        # it should be possible to get observation for t2 and t2 + 1 but not t1
        # or t2 + 2
        self.finger.get_observation(t2)
        self.finger.get_observation(t2 + 1)

        with self.assertRaises(ValueError):
            self.finger.get_observation(t1)

        with self.assertRaises(ValueError):
            self.finger.get_observation(t2 + 2)

    def test_observation_types(self):
        """Verify that all fields of observation are np.ndarrays."""
        # Apply a max torque action for one step
        action = self.finger.Action(torque=[
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
            -self.finger.max_motor_torque,
        ])
        t = self.finger.append_desired_action(action)
        obs = self.finger.get_observation(t)

        # verify types
        self.assertIsInstance(obs.torque, np.ndarray)
        self.assertIsInstance(obs.position, np.ndarray)
        self.assertIsInstance(obs.velocity, np.ndarray)
        self.assertIsInstance(obs.tip_force, np.ndarray)

    def test_get_desired_action(self):
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_desired_action(-1)

        orig_action = self.finger.Action(torque=[1.0, 2.0, 3.0],
                                         position=[0.0, -1.0, -2.0])
        t = self.finger.append_desired_action(orig_action)
        action = self.finger.get_desired_action(t)

        np.testing.assert_array_equal(orig_action.torque, action.torque)
        np.testing.assert_array_equal(orig_action.position, action.position)

        # verify types
        self.assertIsInstance(action.torque, np.ndarray)
        self.assertIsInstance(action.position, np.ndarray)
        self.assertIsInstance(action.position_kd, np.ndarray)
        self.assertIsInstance(action.position_kp, np.ndarray)

    def test_get_applied_action(self):
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_applied_action(-1)

        desired_action = self.finger.Action(torque=[5, 5, 5])
        t = self.finger.append_desired_action(desired_action)
        applied_action = self.finger.get_applied_action(t)

        np.testing.assert_array_almost_equal(
            applied_action.torque,
            [
                self.finger.max_motor_torque,
                self.finger.max_motor_torque,
                self.finger.max_motor_torque,
            ],
        )

        # verify types
        self.assertIsInstance(applied_action.torque, np.ndarray)
        self.assertIsInstance(applied_action.position, np.ndarray)
        self.assertIsInstance(applied_action.position_kd, np.ndarray)
        self.assertIsInstance(applied_action.position_kp, np.ndarray)

    def test_get_timestamp_ms_001(self):
        t = self.finger.append_desired_action(self.finger.Action())
        first_stamp = self.finger.get_timestamp_ms(t)
        t = self.finger.append_desired_action(self.finger.Action())
        second_stamp = self.finger.get_timestamp_ms(t)

        # time step is set to 0.001, so the difference between two steps should
        # be 1 ms.
        self.assertEqual(second_stamp - first_stamp, 1)

    def test_get_timestamp_ms_tplus1_001(self):
        t = self.finger.append_desired_action(self.finger.Action())
        stamp_t = self.finger.get_timestamp_ms(t)
        stamp_tp1 = self.finger.get_timestamp_ms(t + 1)

        # time step is set to 0.001, so the difference between two steps should
        # be 1 ms.
        self.assertEqual(stamp_tp1 - stamp_t, 1)

    def test_get_timestamp_ms_invalid_t(self):
        # verify that t < 0 is not accepted
        with self.assertRaises(ValueError):
            self.finger.get_timestamp_ms(-1)

        t = self.finger.append_desired_action(self.finger.Action())

        with self.assertRaises(ValueError):
            self.finger.get_timestamp_ms(t - 1)

        with self.assertRaises(ValueError):
            self.finger.get_timestamp_ms(t + 2)

    def test_get_current_timeindex(self):
        # no time index before first action
        with self.assertRaises(ValueError):
            self.finger.get_current_timeindex()

        t = self.finger.append_desired_action(self.finger.Action())
        self.assertEqual(self.finger.get_current_timeindex(), t)
コード例 #4
0
class TriFingerReach(gym.Env):
    """
    A gym environment to enable training on either the single or
    the tri-fingers robots for the task of reaching
    """
    def __init__(
        self,
        control_rate_s,
        finger_type,
        enable_visualization,
        smoothing_params,
        use_real_robot=False,
        finger_config_suffix="0",
        synchronize=False,
    ):
        """Intializes the constituents of the reaching environment.

        Constructor sets up the finger robot depending on the finger type, and
        also whether an instance of the simulated or the real robot is to be
        created. Also sets up the observation and action spaces, smoothing for
        reducing jitter on the robot, and provides for a way to synchronize
        robots being trained independently.

        Args:
            control_rate_s (float): the rate (in seconds) at which step method of the env
                will run. The actual robot controller may run at a higher rate,
                so this is used to compute the number of robot control updates
                per environment step.
            finger_type (string): Name of the finger type.  In order to get
                a dictionary of the valid finger types, call
                :meth:`.finger_types_data.get_valid_finger_types`
            enable_visualization (bool): if the simulation env is to be
                visualized
            smoothing_params (dict):
                num_episodes (int): the total number of episodes for which the
                    training is performed
                start_after (float): the fraction of episodes after which the
                    smoothing of applied actions to the motors should start
                final_alpha (float): smoothing coeff that will be reached at
                    the end of the smoothing
                stop_after (float): the fraction of total episodes by which
                    final alpha is to be reached, after which the same final
                    alpha will be used for smoothing in the remainder of
                    the episodes
                is_test (bool, optional): Include this for testing
            use_real_robot (bool): if training is to be performed on
                the real robot ([default] False)
            finger_config_suffix: pass this if only one of
                the three fingers is to be trained. Valid choices include
                [0, 120, 240] ([default] 0)
            synchronize (bool): Set this to True if you want to train
                independently on three fingers in separate processes, but
                have them synchronized. ([default] False)
        """
        #: an instance of a simulated, or a real robot depending on
        #: what is desired.
        if use_real_robot:
            from pybullet_fingers.real_finger import RealFinger

            self.finger = RealFinger(
                finger_type=finger_type,
                finger_config_suffix=finger_config_suffix,
                enable_visualization=enable_visualization,
            )

        else:
            self.finger = SimFinger(
                finger_type=finger_type,
                enable_visualization=enable_visualization,
            )

        self.num_fingers = finger_types_data.get_number_of_fingers(finger_type)

        #: the number of times the same action is to be applied to
        #: the robot.
        self.steps_per_control = int(
            round(control_rate_s / self.finger.time_step_s))
        assert (abs(control_rate_s -
                    self.steps_per_control * self.finger.time_step_s) <=
                0.000001)

        #: the types of observations that should be a part of the environment's
        #: observed state
        self.observations_keys = [
            "joint_positions",
            "joint_velocities",
            "goal_position",
            "action_joint_positions",
        ]

        self.observations_sizes = [
            3 * self.num_fingers,
            3 * self.num_fingers,
            3 * self.num_fingers,
            3 * self.num_fingers,
        ]

        # sets up the observation and action spaces for the environment,
        # unscaled spaces have the custom bounds set up for each observation
        # or action type, whereas all the values in the observation and action
        # spaces lie between 1 and -1
        self.spaces = FingerSpaces(
            num_fingers=self.num_fingers,
            observations_keys=self.observations_keys,
            observations_sizes=self.observations_sizes,
            separate_goals=True,
        )

        self.unscaled_observation_space = (
            self.spaces.get_unscaled_observation_space())
        self.unscaled_action_space = self.spaces.get_unscaled_action_space()

        self.observation_space = self.spaces.get_scaled_observation_space()
        self.action_space = self.spaces.get_scaled_action_space()

        #: a logger to enable logging of observations if desired
        self.logger = DataLogger()

        # sets up smooothing
        if "is_test" in smoothing_params:
            self.smoothing_start_episode = 0
            self.smoothing_alpha = smoothing_params["final_alpha"]
            self.smoothing_increase_step = 0
            self.smoothing_stop_episode = math.inf
        else:
            self.smoothing_stop_episode = int(
                smoothing_params["num_episodes"] *
                smoothing_params["stop_after"])

            self.smoothing_start_episode = int(
                smoothing_params["num_episodes"] *
                smoothing_params["start_after"])
            num_smoothing_increase_steps = (self.smoothing_stop_episode -
                                            self.smoothing_start_episode)
            self.smoothing_alpha = 0
            self.smoothing_increase_step = (smoothing_params["final_alpha"] /
                                            num_smoothing_increase_steps)

        self.smoothed_action = None
        self.episode_count = 0

        #: a marker to visualize where the target goal position for the episode
        #: is to which the tip link(s) of the robot should reach
        self.enable_visualization = enable_visualization
        if self.enable_visualization:
            self.goal_marker = visual_objects.Marker(
                number_of_goals=self.num_fingers)

        # set up synchronization if it's set to true
        self.synchronize = synchronize
        if synchronize:
            now = datetime.datetime.now()
            self.next_start_time = datetime.datetime(now.year, now.month,
                                                     now.day, now.hour,
                                                     now.minute + 1)
        else:
            self.next_start_time = None

        self.seed()
        self.reset()

    def _compute_reward(self, observation, goal):
        """
        The reward function of the environment

        Args:
            observation (list): the observation at the
                current step
            goal (list): the desired goal for the episode

        Returns:
            the reward, and the done signal
        """
        joint_positions = observation[
            self.spaces.key_to_index["joint_positions"]]

        end_effector_positions = self.finger.pinocchio_utils.forward_kinematics(
            np.array(joint_positions))

        # TODO is matrix norm really always same as vector norm on flattend
        # matrices?
        distance_to_goal = utils.compute_distance(end_effector_positions, goal)

        reward = -distance_to_goal
        done = False

        return reward * self.steps_per_control, done

    def _get_state(self, observation, action, log_observation=False):
        """
        Get the current observation from the env for the agent

        Args:
            log_observation (bool): specify whether you want to
                log the observation

        Returns:
            observation (list): comprising of the observations corresponding
                to the key values in the observation_keys
        """
        tip_positions = self.finger.pinocchio_utils.forward_kinematics(
            observation.position)
        end_effector_position = np.concatenate(tip_positions)
        joint_positions = observation.position
        joint_velocities = observation.velocity
        flat_goals = np.concatenate(self.goal)
        end_effector_to_goal = list(
            np.subtract(flat_goals, end_effector_position))

        # populate this observation dict from which you can select which
        # observation types to finally choose depending on the keys
        # used for constructing the observation space of the environment
        observation_dict = {}
        observation_dict["end_effector_position"] = end_effector_position
        observation_dict["joint_positions"] = joint_positions
        observation_dict["joint_velocities"] = joint_velocities
        observation_dict["end_effector_to_goal"] = end_effector_to_goal
        observation_dict["goal_position"] = flat_goals
        observation_dict["action_joint_positions"] = action

        if log_observation:
            self.logger.append(joint_positions, end_effector_position,
                               time.time())

        # returns only the observations corresponding to the keys that were
        # used for constructing the observation space
        observation = [
            v for key in self.observations_keys for v in observation_dict[key]
        ]

        return observation

    def step(self, action):
        """
        The env step method

        Args:
            action (list): the joint positions that have to be achieved

        Returns:
            the observation scaled to lie between [-1;1], the reward,
            the done signal, and info on if the agent was successful at
            the current step
        """
        # Unscale the action to the ranges of the action space of the
        # environment, explicitly (as the prediction from the network
        # lies in the range [-1;1])
        unscaled_action = utils.unscale(action, self.unscaled_action_space)

        # smooth the action by taking a weighted average with the previous
        # action, where the weight, ie, the smoothing_alpha is gradually
        # increased at every episode reset (see the reset method for details)
        if self.smoothed_action is None:
            # start with current position
            # self.smoothed_action = self.finger.observation.position
            self.smoothed_action = unscaled_action

        self.smoothed_action = (self.smoothing_alpha * self.smoothed_action +
                                (1 - self.smoothing_alpha) * unscaled_action)

        # this is the control loop to send the actions for a few timesteps
        # which depends on the actual control rate
        finger_action = self.finger.Action(position=self.smoothed_action)
        state = None
        for _ in range(self.steps_per_control):
            t = self.finger.append_desired_action(finger_action)
            observation = self.finger.get_observation(t)
            # get observation from first iteration (when action is applied the
            # first time)
            if state is None:
                state = self._get_state(observation, self.smoothed_action,
                                        True)
            if self.synchronize:
                self.observation = observation
        reward, done = self._compute_reward(state, self.goal)
        info = {"is_success": np.float32(done)}
        scaled_observation = utils.scale(state,
                                         self.unscaled_observation_space)
        return scaled_observation, reward, done, info

    def reset(self):
        """
        Episode reset

        Returns:
            the scaled to [-1;1] observation from the env after the reset
        """
        # synchronize episode starts with wall time
        # (freeze the robot at the current position before starting the sleep)
        if self.next_start_time:
            try:
                t = self.finger.append_desired_action(
                    self.finger.Action(position=self.observation.position))
                self.finger.get_observation(t)
            except Exception:
                pass

            utils.sleep_until(self.next_start_time)
            self.next_start_time += datetime.timedelta(seconds=4)

        # updates smoothing parameters
        self.update_smoothing()
        self.episode_count += 1
        self.smoothed_action = None

        # resets the finger to a random position
        action = sample.feasible_random_joint_positions_for_reaching(
            self.finger, self.spaces.action_bounds)
        observation = self.finger.reset_finger_positions_and_velocities(action)

        # generates a random goal for the next episode
        target_joint_config = np.asarray(
            sample.feasible_random_joint_positions_for_reaching(
                self.finger, self.spaces.action_bounds))
        self.goal = self.finger.pinocchio_utils.forward_kinematics(
            target_joint_config)

        if self.enable_visualization:
            self.goal_marker.set_state(self.goal)

        # logs relevant information for replayability
        self.logger.new_episode(target_joint_config, self.goal)

        return utils.scale(
            self._get_state(observation, action=action),
            self.unscaled_observation_space,
        )

    def update_smoothing(self):
        """
        Update the smoothing coefficient with which the action to be
        applied is smoothed
        """
        if (self.smoothing_start_episode <= self.episode_count <
                self.smoothing_stop_episode):
            self.smoothing_alpha += self.smoothing_increase_step
        print("episode: {}, smoothing: {}".format(self.episode_count,
                                                  self.smoothing_alpha))