def reset(self): # reset simulation del self.platform self.platform = TriFingerPlatform( visualization=self.visualization, initial_robot_position=TriFingerPlatform.spaces.robot_position. default, initial_object_pose=self.initializer.get_initial_state(), ) goal = self.initializer.get_goal() self.goal = { "position": goal.position, "orientation": goal.orientation, } # visualize the goal if self.visualization: self.goal_marker = visual_objects.CubeMarker( width=0.065, position=goal.position, orientation=goal.orientation, ) self.info = {"difficulty": self.initializer.difficulty} self.step_count = 0 return self._create_observation(0)
def reset(self): """Reset the environment.""" # hard-reset simulation del self.platform # initialize simulation initial_robot_position = ( TriFingerPlatform.spaces.robot_position.default) # initialize cube at the centre initial_object_pose = mct.move_cube.Pose( position=mct.INITIAL_CUBE_POSITION) self.platform = TriFingerPlatform( visualization=self.visualization, initial_robot_position=initial_robot_position, initial_object_pose=initial_object_pose, ) # get goal trajectory from the initializer trajectory = self.initializer.get_trajectory() # visualize the goal if self.visualization: self.goal_marker = visual_objects.CubeMarker( width=mct.move_cube._CUBE_WIDTH, position=trajectory[0][1], orientation=(0, 0, 0, 1), pybullet_client_id=self.platform.simfinger._pybullet_client_id, ) self.info = {"time_index": -1, "trajectory": trajectory} self.step_count = 0 return self._create_observation(0)
def reset(self): # reset simulation del self.platform # initialize simulation initial_robot_position = ( TriFingerPlatform.spaces.robot_position.default) initial_object_pose = self.initializer.get_initial_state() goal_object_pose = self.initializer.get_goal() self.platform = TriFingerPlatform( visualization=self.visualization, initial_robot_position=initial_robot_position, initial_object_pose=initial_object_pose, ) self.goal = { "position": goal_object_pose.position, "orientation": goal_object_pose.orientation, } # visualize the goal if self.visualization: self.goal_marker = visual_objects.CubeMarker( width=0.065, position=goal_object_pose.position, orientation=goal_object_pose.orientation, physicsClientId=self.platform.simfinger._pybullet_client_id, ) self.info = {"difficulty": self.initializer.difficulty} self.step_count = 0 return self._create_observation(0)
def reset(self): # reset simulation del self.platform # initialize simulation if self.initializer is None: # if no initializer is given (which will be the case during training), # we can initialize in any way desired. here, we initialize the cube always # in the center of the arena, instead of randomly, as this appears to help # training initial_robot_position = ( TriFingerPlatform.spaces.robot_position.default ) default_object_position = ( TriFingerPlatform.spaces.object_position.default ) default_object_orientation = ( TriFingerPlatform.spaces.object_orientation.default ) initial_object_pose = move_cube.Pose( position=default_object_position, orientation=default_object_orientation, ) goal_object_pose = move_cube.sample_goal(difficulty=1) else: # if an initializer is given, i.e. during evaluation, we need to initialize # according to it, to make sure we remain coherent with the standard CubeEnv. # otherwise the trajectories produced during evaluation will be invalid. initial_robot_position = ( TriFingerPlatform.spaces.robot_position.default ) initial_object_pose = self.initializer.get_initial_state() goal_object_pose = self.initializer.get_goal() self.platform = TriFingerPlatform( visualization=self.visualization, initial_robot_position=initial_robot_position, initial_object_pose=initial_object_pose, ) self.goal = { "position": goal_object_pose.position, "orientation": goal_object_pose.orientation, } # visualize the goal if self.visualization: self.goal_marker = visual_objects.CubeMarker( width=0.065, position=goal_object_pose.position, orientation=goal_object_pose.orientation, pybullet_client_id=self.platform.simfinger._pybullet_client_id, ) self.info = dict() self.step_count = 0 return self._create_observation(0)
def test_timestamps_no_camera_delay(): platform = TriFingerPlatform( visualization=False, enable_cameras=True, camera_delay_steps=0 ) action = platform.Action() # ensure the camera frame rate is set to 10 Hz assert platform.camera_rate_fps == 10 # compute camera update step interval based on configured rates camera_update_step_interval = ( 1 / platform.camera_rate_fps ) / platform._time_step # robot time step in milliseconds time_step_ms = platform._time_step * 1000 # First time step t = platform.append_desired_action(action) first_stamp_ms = platform.get_timestamp_ms(t) first_stamp_s = first_stamp_ms / 1000 camera_obs = platform.get_camera_observation(t) assert first_stamp_s == camera_obs.cameras[0].timestamp assert first_stamp_s == camera_obs.cameras[1].timestamp assert first_stamp_s == camera_obs.cameras[2].timestamp # Test time stamps of observations t+1 (with the current implementation, # the observation should be exactly the same as for t). camera_obs_next = platform.get_camera_observation(t + 1) assert first_stamp_s == camera_obs_next.cameras[0].timestamp assert first_stamp_s == camera_obs_next.cameras[1].timestamp assert first_stamp_s == camera_obs_next.cameras[2].timestamp # Second time step t = platform.append_desired_action(action) second_stamp_ms = platform.get_timestamp_ms(t) assert second_stamp_ms == first_stamp_ms + time_step_ms # there should not be a new camera observation yet camera_obs = platform.get_camera_observation(t) assert first_stamp_s == camera_obs.cameras[0].timestamp assert first_stamp_s == camera_obs.cameras[1].timestamp assert first_stamp_s == camera_obs.cameras[2].timestamp # do several steps until a new camera/object update is expected # (-1 because there is already one action appended above for the # "second time step") for _ in range(int(camera_update_step_interval - 1)): t = platform.append_desired_action(action) nth_stamp_ms = platform.get_timestamp_ms(t) nth_stamp_s = nth_stamp_ms / 1000 assert nth_stamp_ms > second_stamp_ms camera_obs = platform.get_camera_observation(t) assert nth_stamp_s == camera_obs.cameras[0].timestamp assert nth_stamp_s == camera_obs.cameras[1].timestamp assert nth_stamp_s == camera_obs.cameras[2].timestamp
def test_camera_timestamps_with_camera_delay_less_than_rate(): # A bit more complex example (probably redundant with the simple one above # but since I already implemented it, let's keep it). platform = TriFingerPlatform( visualization=False, enable_cameras=True, camera_delay_steps=10 ) action = platform.Action() # ensure the camera frame rate is set to 10 Hz assert platform.camera_rate_fps == 10 assert platform._compute_camera_update_step_interval() == 100 first_stamp_s = platform.get_timestamp_ms(0) / 1000 # The start is a bit tricky because of the initial observation which has # timestamp 0 but the next observation is triggered in the first step, # resulting in the same timestamp. So first step 100 times, until the next # camera update is triggered. for i in range(100): t = platform.append_desired_action(action) # In each step, we still should see the camera observation from step 0 cameras = platform.get_camera_observation(t).cameras assert first_stamp_s == cameras[0].timestamp, f"i={i}, t={t}" assert first_stamp_s == cameras[1].timestamp, f"i={i}, t={t}" assert first_stamp_s == cameras[2].timestamp, f"i={i}, t={t}" assert t == 99 # one more step to trigger the next camera update t = platform.append_desired_action(action) second_stamp_s = platform.get_timestamp_ms(t) / 1000 # The next observation should be triggered now but due to the delay, we # should still see the old observation for the next 9 steps for i in range(9): t = platform.append_desired_action(action) cameras = platform.get_camera_observation(t).cameras assert first_stamp_s == cameras[0].timestamp, f"i={i}, t={t}" assert first_stamp_s == cameras[1].timestamp, f"i={i}, t={t}" assert first_stamp_s == cameras[2].timestamp, f"i={i}, t={t}" # after the next step, we should see an updated camera observation which # again persists for 100 steps for i in range(100): t = platform.append_desired_action(action) cameras = platform.get_camera_observation(t).cameras assert second_stamp_s == cameras[0].timestamp, f"i={i}, t={t}" assert second_stamp_s == cameras[1].timestamp, f"i={i}, t={t}" assert second_stamp_s == cameras[2].timestamp, f"i={i}, t={t}" # and now the next update should be there t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert second_stamp_s < camera_obs.cameras[0].timestamp
def test_timestamps(self): platform = TriFingerPlatform(visualization=False, enable_cameras=True) action = platform.Action() # ensure the camera frame rate is set to 10 Hz self.assertEqual(platform.camera_rate_fps, 10) # compute camera update step interval based on configured rates camera_update_step_interval = ( 1 / platform.camera_rate_fps) / platform._time_step # robot time step in milliseconds time_step_ms = platform._time_step * 1000 # First time step t = platform.append_desired_action(action) first_stamp_ms = platform.get_timestamp_ms(t) first_stamp_s = first_stamp_ms / 1000 camera_obs = platform.get_camera_observation(t) self.assertEqual(first_stamp_ms, camera_obs.cameras[0].timestamp) self.assertEqual(first_stamp_ms, camera_obs.cameras[1].timestamp) self.assertEqual(first_stamp_ms, camera_obs.cameras[2].timestamp) # Test time stamps of observations t+1 camera_obs_next = platform.get_camera_observation(t + 1) next_stamp_ms = first_stamp_ms + time_step_ms self.assertEqual(next_stamp_ms, camera_obs_next.cameras[0].timestamp) self.assertEqual(next_stamp_ms, camera_obs_next.cameras[1].timestamp) self.assertEqual(next_stamp_ms, camera_obs_next.cameras[2].timestamp) # Second time step t = platform.append_desired_action(action) second_stamp_ms = platform.get_timestamp_ms(t) self.assertEqual(second_stamp_ms, first_stamp_ms + time_step_ms) # there should not be a new camera observation yet camera_obs = platform.get_camera_observation(t) self.assertEqual(first_stamp_s, camera_obs.cameras[0].timestamp) self.assertEqual(first_stamp_s, camera_obs.cameras[1].timestamp) self.assertEqual(first_stamp_s, camera_obs.cameras[2].timestamp) # do several steps until a new camera/object update is expected # (-1 because there is already one action appended above for the # "second time step") for _ in range(int(camera_update_step_interval - 1)): t = platform.append_desired_action(action) nth_stamp_ms = platform.get_timestamp_ms(t) nth_stamp_s = nth_stamp_ms / 1000 self.assertGreater(nth_stamp_ms, second_stamp_ms) camera_obs = platform.get_camera_observation(t) self.assertEqual(nth_stamp_s, camera_obs.cameras[0].timestamp) self.assertEqual(nth_stamp_s, camera_obs.cameras[1].timestamp) self.assertEqual(nth_stamp_s, camera_obs.cameras[2].timestamp)
def test_object_pose_observation(self): Pose = namedtuple("Pose", ["position", "orientation"]) pose = Pose([0.1, -0.5, 0], [0, 0, 0.2084599, 0.97803091]) platform = TriFingerPlatform(initial_object_pose=pose) t = platform.append_desired_action(platform.Action()) obs = platform.get_camera_observation(t) np.testing.assert_array_equal(obs.object_pose.position, pose.position) np.testing.assert_array_almost_equal(obs.object_pose.orientation, pose.orientation)
def test_get_camera_observation_timeindex(self): platform = TriFingerPlatform(enable_cameras=True) # negative time index needs to be rejected with self.assertRaises(ValueError): platform.get_camera_observation(-1) t = platform.append_desired_action(platform.Action()) try: platform.get_camera_observation(t) platform.get_camera_observation(t + 1) except Exception: self.fail() with self.assertRaises(ValueError): platform.get_camera_observation(t + 2)
def test_get_object_pose_timeindex(self): platform = TriFingerPlatform() # negative time index needs to be rejected with self.assertRaises(ValueError): platform.get_object_pose(-1) t = platform.append_desired_action(platform.Action()) try: platform.get_object_pose(t) platform.get_object_pose(t + 1) except Exception: self.fail() with self.assertRaises(ValueError): platform.get_object_pose(t + 2)
def test_camera_timestamps_with_camera_delay_simple(): # Basic test with simple values: Camera update every 2 steps, delay of 1 # step. platform = TriFingerPlatform( visualization=False, enable_cameras=True, camera_delay_steps=1 ) action = platform.Action() # set camera rate to 100 fps so we need less stepping in this test platform.camera_rate_fps = 500 assert platform._compute_camera_update_step_interval() == 2 initial_stamp_s = platform.get_timestamp_ms(0) / 1000 # first step triggers camera (we get the initial observation at this point) t = platform.append_desired_action(action) assert t == 0 camera_obs = platform.get_camera_observation(t) assert initial_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert initial_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert initial_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" trigger1_stamp_s = platform.get_timestamp_ms(t) / 1000 # in second step observation is ready but still has stamp zero t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger1_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" # in third step new observation is triggered but due to delay we still get # the old one t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger1_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" trigger2_stamp_s = platform.get_timestamp_ms(t) / 1000 assert trigger2_stamp_s > trigger1_stamp_s # in forth step the new observation is ready t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger2_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger2_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger2_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" # again trigger but we get previous observation due to delay t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger2_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger2_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger2_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" trigger3_stamp_s = platform.get_timestamp_ms(t) / 1000 assert trigger3_stamp_s > trigger2_stamp_s # and there should be an update again t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger3_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger3_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger3_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}"
def test_camera_timestamps_with_camera_delay_more_than_rate(): # In this test the delay is higher than the camera rate, so this results in # the effective rate to be reduced. # Use small numbers (camera update interval 2 and delay 3) to keep the test # manageable. platform = TriFingerPlatform( visualization=False, enable_cameras=True, camera_delay_steps=3 ) action = platform.Action() # set high camera rate so we need less stepping in this test platform.camera_rate_fps = 500 assert platform._compute_camera_update_step_interval() == 2 initial_stamp_s = platform.get_timestamp_ms(0) / 1000 # first step triggers camera (we get the initial observation at this point) t = platform.append_desired_action(action) assert t == 0 camera_obs = platform.get_camera_observation(t) assert initial_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert initial_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert initial_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" trigger1_stamp_s = platform.get_timestamp_ms(t) / 1000 # now it takes 3 steps until we actually see the new observation t = platform.append_desired_action(action) t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert initial_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert initial_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert initial_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger1_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" # Only now, one step later, the next update is triggered t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger1_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" trigger2_stamp_s = platform.get_timestamp_ms(t) / 1000 assert trigger2_stamp_s > trigger1_stamp_s # And again it takes 3 steps until we actually see the new observation t = platform.append_desired_action(action) t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger1_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger1_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}" t = platform.append_desired_action(action) camera_obs = platform.get_camera_observation(t) assert trigger2_stamp_s == camera_obs.cameras[0].timestamp, f"t={t}" assert trigger2_stamp_s == camera_obs.cameras[1].timestamp, f"t={t}" assert trigger2_stamp_s == camera_obs.cameras[2].timestamp, f"t={t}"
def test_timestamps(self): platform = TriFingerPlatform(visualization=False, enable_cameras=True) action = platform.Action() # compute camera update step interval based on configured rates camera_update_step_interval = ( 1 / platform._camera_rate_fps) / platform._time_step # robot time step in milliseconds time_step_ms = platform._time_step * 1000 # First time step t = platform.append_desired_action(action) first_stamp_ms = platform.get_timestamp_ms(t) first_stamp_s = first_stamp_ms / 1000 object_pose = platform.get_object_pose(t) camera_obs = platform.get_camera_observation(t) self.assertEqual(first_stamp_ms, object_pose.timestamp) self.assertEqual(first_stamp_ms, camera_obs.cameras[0].timestamp) self.assertEqual(first_stamp_ms, camera_obs.cameras[1].timestamp) self.assertEqual(first_stamp_ms, camera_obs.cameras[2].timestamp) # Test time stamps of observations t+1 object_pose_next = platform.get_object_pose(t + 1) camera_obs_next = platform.get_camera_observation(t + 1) next_stamp_ms = first_stamp_ms + time_step_ms self.assertEqual(next_stamp_ms, object_pose_next.timestamp) self.assertEqual(next_stamp_ms, camera_obs_next.cameras[0].timestamp) self.assertEqual(next_stamp_ms, camera_obs_next.cameras[1].timestamp) self.assertEqual(next_stamp_ms, camera_obs_next.cameras[2].timestamp) # XXX =============================================================== # The following part of the test is disabled as currently everything is # updated in each step (i.e. no lower update rate for camera and # object). return # Second time step t = platform.append_desired_action(action) second_stamp_ms = platform.get_timestamp_ms(t) self.assertEqual(second_stamp_ms, first_stamp_ms + time_step_ms) # there should not be a new camera observation yet object_pose = platform.get_object_pose(t) camera_obs = platform.get_camera_observation(t) self.assertEqual(first_stamp_s, object_pose.timestamp) self.assertEqual(first_stamp_s, camera_obs.cameras[0].timestamp) self.assertEqual(first_stamp_s, camera_obs.cameras[1].timestamp) self.assertEqual(first_stamp_s, camera_obs.cameras[2].timestamp) # do several steps until a new camera/object update is expected for _ in range(int(camera_update_step_interval)): t = platform.append_desired_action(action) nth_stamp_ms = platform.get_timestamp_ms(t) nth_stamp_s = nth_stamp_ms / 1000 self.assertGreater(nth_stamp_ms, second_stamp_ms) object_pose = platform.get_object_pose(t) camera_obs = platform.get_camera_observation(t) self.assertEqual(nth_stamp_s, object_pose.timestamp) self.assertEqual(nth_stamp_s, camera_obs.cameras[0].timestamp) self.assertEqual(nth_stamp_s, camera_obs.cameras[1].timestamp) self.assertEqual(nth_stamp_s, camera_obs.cameras[2].timestamp)