def get_loss(global_feat, local_feat, results, labels): triple_loss = global_loss(TripletLoss(margin=0.2), global_feat, labels)[0] + \ local_loss(TripletLoss(margin=0.2), local_feat, labels)[0] celoss = c(results, labels) #print('train result:', results.size()) #print('loss:', celoss.mean()) return triple_loss + celoss, triple_loss.item(), celoss.item()
def __init__(self, model_path, alpha): """ Constructor class :param model_path: is the path to the base face verification embedding model :param alpha: is the alpha to use for the triplet loss calculation """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = tf.keras.models.load_model(model_path) A = tf.keras.Input(shape=(96, 96, 3)) P = tf.keras.Input(shape=(96, 96, 3)) N = tf.keras.Input(shape=(96, 96, 3)) net_01 = self.base_model(A) net_02 = self.base_model(P) net_03 = self.base_model(N) loss = TripletLoss(alpha) mix = [net_01, net_02, net_03] out = loss(mix) my_model = tf.keras.models.Model([A, P, N], out) my_model.compile(optimizer='adam') self.training_model = my_model
def __init__(self, model_path, alpha): """ class constructor :param model_path: is the path to the base face verification embedding model :param alpha: is the alpha to use for the triplet loss calculation """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = K.models.load_model(model_path) A = K.Input(shape=(96, 96, 3)) P = K.Input(shape=(96, 96, 3)) N = K.Input(shape=(96, 96, 3)) inputs = [A, P, N] output_A = self.base_model(A) output_P = self.base_model(P) output_N = self.base_model(N) output0 = [output_A, output_P, output_N] loss = TripletLoss(alpha) outputs = loss(output0) model = K.models.Model(inputs, outputs) model.compile(optimizer="Adam") self.training_model = model
def __init__(self, model_path, alpha): """ Initialize Train Model - model_path is the path to the base face verification embedding model - loads the model using with tf.keras.utils.CustomObjectScope({'tf': tf}): - saves this model as the public instance method base_model - alpha is the alpha to use for the triplet loss calculation Creates a new model: inputs: [A, P, N] A is a numpy.ndarray containing the anchor images P is a numpy.ndarray containing the positive images N is a numpy.ndarray containing the negative images outputs: the triplet losses of base_model compiles the model with Adam optimization and no additional losses save this model as the public instance method training_model you can use from triplet_loss import TripletLoss """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = K.models.load_model(model_path) A_input = tf.keras.Input(shape=(96, 96, 3)) P_input = tf.keras.Input(shape=(96, 96, 3)) N_input = tf.keras.Input(shape=(96, 96, 3)) predict_a = self.base_model(A_input) predict_b = self.base_model(P_input) predict_c = self.base_model(N_input) tl = TripletLoss(alpha) output = tl([predict_a, predict_b, predict_c]) inputs = [A_input, P_input, N_input] training_model = K.models.Model(inputs, output) training_model.compile(optimizer='Adam') self.training_model = training_model
def batch_eval(batch, model): model.eval() triplet_loss_func = TripletLoss(margin=args.margin) # cos_sim_func = nn.CosineSimilarity(dim=1, eps=1e-6) # loss_func = nn.MSELoss() anchor, positive, negative = batch anchor_feature = model(anchor) positive_feature = model(positive) negative_feature = model(negative) # positive_sim = cos_sim_func(anchor_feature, positive_feature) # negative_sim = cos_sim_func(anchor_feature, negative_feature) # pos_sim_loss = loss_func(positive_sim, torch.tensor([1]*len(anchor)).type(torch.FloatTensor).to(device)) # neg_sim_loss = loss_func(negative_sim, torch.tensor([0]*len(anchor)).type(torch.FloatTensor).to(device)) triplet_loss = triplet_loss_func(anchor_feature, positive_feature, negative_feature) loss = triplet_loss positive_distance = (anchor_feature - positive_feature).pow(2).sum(1).detach() negative_distance = (anchor_feature - negative_feature).pow(2).sum(1).detach() acc = torch.gt(negative_distance, positive_distance).type(torch.FloatTensor).mean() return loss, acc, positive_distance, negative_distance
def __init__(self, model_path, alpha): """ Initialize model Args: model_path: path to the base face verification embedding model alpha: alpha to use for the triplet loss calculation """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = K.models.load_model(model_path) self.alpha = alpha # adding inputs [A, P. N] A = K.Input(shape=(96, 96, 3)) P = K.Input(shape=(96, 96, 3)) N = K.Input(shape=(96, 96, 3)) inputs = [A, P, N] X_a = self.base_model(A) X_p = self.base_model(P) X_n = self.base_model(N) encoded_input = [X_a, X_p, X_n] decoded = TripletLoss(alpha=alpha)(encoded_input) decoder = K.models.Model(inputs, decoded) self.training_model = decoder self.training_model.compile(optimizer='Adam') self.training_model.save
def __init__(self, model_path, alpha): """ constructor :param model_path: path to the base face verification embedding model :param alpha: alpha to use for the triplet loss calculation """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = tf.keras.models.load_model(model_path) A = tf.keras.Input(shape=(96, 96, 3)) P = tf.keras.Input(shape=(96, 96, 3)) N = tf.keras.Input(shape=(96, 96, 3)) network0 = self.base_model(A) network1 = self.base_model(P) network2 = self.base_model(N) tl = TripletLoss(alpha) # combine the output of the three branches combined = [network0, network1, network2] output = tl(combined) my_model = tf.keras.models.Model([A, P, N], output) my_model.compile(optimizer='adam') self.training_model = my_model
def __init__(self, model_path, alpha): """ Class constructor Arguments: - model_path is the path to the base face verification embedding model * loads the model using with tf.keras.utils.CustomObjectScope({'tf': tf}) * saves this model as the public instance method base_model - alpha is the alpha to use for the triplet loss calculation """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = tf.keras.models.load_model(model_path) A = tf.keras.Input(shape=(96, 96, 3)) P = tf.keras.Input(shape=(96, 96, 3)) N = tf.keras.Input(shape=(96, 96, 3)) netw1 = self.base_model(A) netw2 = self.base_model(P) netw3 = self.base_model(N) tl = TripletLoss(alpha) nall = [netw1, netw2, netw3] out = tl(nall) model = tf.keras.models.Model([A, P, N], out) model.compile(optimizer='adam') self.training_model = model
def __init__(self, model_path, alpha): """ Class constructor Args: model_path: path to the base face verification embedding model alpha: is the alpha to use for the triplet loss calculation """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = K.models.load_model(model_path) A = tf.keras.Input(shape=(96, 96, 3)) P = tf.keras.Input(shape=(96, 96, 3)) N = tf.keras.Input(shape=(96, 96, 3)) output_A = self.base_model(A) output_P = self.base_model(P) output_N = self.base_model(N) outputs = [output_A, output_P, output_N] tl = TripletLoss(alpha) output = tl(outputs) model = K.models.Model([A, P, N], output) model.compile(optimizer="adam") self.training_model = model
def train_model(epoch, model, optimizer, lr_scheduler, loader, center_loss=None): global GLOBAL_STEP loss_meter = AverageMeter() acc_meter = AverageMeter() positive_distance_meter = AverageMeter() negative_distance_meter = AverageMeter() model.train() model.to(device) print('=' * 20 + "Model Training" + '=' * 20) triplet_loss = TripletLoss(args.margin) for i, batch in tqdm(enumerate(loader)): start = time.time() optimizer.zero_grad() model.zero_grad() anchor, positive, negative = batch anchor_feature = model(anchor) positive_feature = model(positive) negative_feature = model(negative) loss = triplet_loss(anchor_feature, positive_feature, negative_feature) loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_bound) optimizer.step() positive_distance = (anchor_feature - positive_feature).pow(2).sum(1).detach() negative_distance = (anchor_feature - negative_feature).pow(2).sum(1).detach() acc = torch.gt(negative_distance, positive_distance).type(torch.FloatTensor).mean() loss_meter.update(loss.item()) acc_meter.update(acc.item()) positive_distance_meter.update(positive_distance.mean().item()) negative_distance_meter.update(negative_distance.mean().item()) end = time.time() used_time = end - start lr = optimizer.param_groups[0]['lr'] display = 'epoch=' + str(epoch) + \ '\tglobal_step=%d' % (GLOBAL_STEP) + \ '\tloss=%.4f' % (loss_meter.val) + \ '\tloss_avg=%.4f' % (loss_meter.avg) + \ '\tpos_avg=%.4f' % (positive_distance_meter.avg) + \ '\tneg_avg=%.4f' % (negative_distance_meter.avg) + \ '\tacc=%.4f' % (acc_meter.avg) + \ '\tlr=%.6f' % (lr) + \ '\t|g|=%.4f' % (grad_norm) + \ '\ttime=%.2fit/s' % (1. / used_time) if (GLOBAL_STEP) % args.log_every == 0: tqdm.write(display) save_mode(epoch=epoch, model=model, optimizer=optimizer, lr_scheduler=lr_scheduler, center_loss=center_loss) GLOBAL_STEP += 1 return
def eval_model(epoch, model, loader): global CURRENT_LOSS model.eval() model.to(device) positive_distance_meter = AverageMeter() negative_distance_meter = AverageMeter() loss_meter = AverageMeter() acc_meter = AverageMeter() triplet_loss = TripletLoss(margin=args.margin) print('=' * 20 + "Model Eval" + '=' * 20) for i, batch in tqdm(enumerate(loader)): start = time.time() with torch.no_grad(): anchor, positive, negative = batch anchor_feature = model(anchor) positive_feature = model(positive) negative_feature = model(negative) loss = triplet_loss(anchor_feature, positive_feature, negative_feature) positive_distance = (anchor_feature - positive_feature).pow(2).sum(1).detach() negative_distance = (anchor_feature - negative_feature).pow(2).sum(1).detach() acc = torch.gt(negative_distance, positive_distance).type(torch.FloatTensor).mean() loss_meter.update(loss.item()) acc_meter.update(acc.item()) positive_distance_meter.update(positive_distance.mean().item()) negative_distance_meter.update(negative_distance.mean().item()) end = time.time() used_time = end - start display = 'epoch=' + str(epoch) + \ '\tglobal_step=%d' % (GLOBAL_STEP) + \ '\tloss=%.4f' % (loss_meter.val) + \ '\tloss_avg=%.4f' % (loss_meter.avg) + \ '\tpos_avg=%.4f' % (positive_distance_meter.avg) + \ '\tneg_avg=%.4f' % (negative_distance_meter.avg) + \ '\tacc=%.4f' % (acc_meter.avg) + \ '\ttime=%.2fit/s' % (1. / used_time) if (i) % (args.log_every / 2) == 0: tqdm.write(display) print("Final Acc: %.6f\n" % (acc_meter.avg)) print("Final Loss Acc: %.6f\n" % (loss_meter.avg)) print("Final Positive Distance: %.6f\n" % (positive_distance_meter.avg)) print("Final Negative Distance: %.6f\n" % (negative_distance_meter.avg)) CURRENT_LOSS = loss_meter.avg return
def batch_eval(batch, model): model.eval() triplet_loss_func = TripletLoss(margin=args.margin) anchor, positive, negative = batch anchor_feature = model(anchor) positive_feature = model(positive) negative_feature = model(negative) triplet_loss = triplet_loss_func(anchor_feature, positive_feature, negative_feature) loss = triplet_loss positive_distance = (anchor_feature - positive_feature).pow(2).sum(1).detach() negative_distance = (anchor_feature - negative_feature).pow(2).sum(1).detach() acc = torch.gt(negative_distance, positive_distance).type(torch.FloatTensor).mean() return loss, acc, positive_distance, negative_distance
def __init__(self, model_path, alpha): """ * model_path is the path to the base face verification embedding model * loads the model using with tf.keras.utils.CustomObjectScope({'tf': tf}): * saves this model as the public instance method base_model * alpha is the alpha to use for the triplet loss calculation * Creates a new model: * * inputs: [A, P, N] - A is a numpy.ndarray of shape (m, n, n, 3)containing the aligned anchor images - P is a numpy.ndarray of shape (m, n, n, 3) containing the aligned positive images - N is a numpy.ndarray of shape (m, n, n, 3)containing the aligned negative images - m is the number of images - n is the size of the aligned images * * outputs: the triplet losses of base_model * * compiles the model with: - Adam optimization - no additional losses * * save this model as the public instance attribute training_model * you can use from triplet_loss import TripletLoss """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = tf.keras.models.load_model(model_path) # complete Model # we create this Inputs because there are the inputs # of base_model model A = tf.keras.Input(shape=(96, 96, 3)) P = tf.keras.Input(shape=(96, 96, 3)) N = tf.keras.Input(shape=(96, 96, 3)) # each one of the A P N have to enter in the base_model model predict_a = self.base_model(A) predict_b = self.base_model(P) predict_c = self.base_model(N) # the outputs have to enter in the tl tl = TripletLoss(alpha) output = tl([predict_a, predict_b, predict_c]) # In this way we send 3 different inputs model_fin = tf.keras.models.Model([A, P, N], outputs=output) model_fin.compile(optimizer='adam') self.training_model = model_fin
def __init__(self, model_path, alpha): """ Initialize Train Model - model_path is the path to the base face verification embedding model - loads the model using with tf.keras.utils.CustomObjectScope({'tf': tf}): - saves this model as the public instance method base_model - alpha is the alpha to use for the triplet loss calculation Creates a new model: inputs: [A, P, N] A is a numpy.ndarray containing the anchor images P is a numpy.ndarray containing the positive images N is a numpy.ndarray containing the negative images outputs: the triplet losses of base_model compiles the model with Adam optimization and no additional losses save this model as the public instance method training_model you can use from triplet_loss import TripletLoss """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = K.models.load_model(model_path) self.base_model.save(base_model) A_input = tf.placeholder(tf.float32, (None, 96, 96, 3)) P_input = tf.placeholder(tf.float32, (None, 96, 96, 3)) N_input = tf.placeholder(tf.float32, (None, 96, 96, 3)) inputs = [A_inputs, P_inputs, N_inputs] outputs_embedding = self.base_model(inputs) """ P = self.base_model(P_input) N = self.base_model(N_input) """ tl = TripletLoss(alpha) output = tl(outputs_embedding) training_model = K.models.Model(inputs, output) training_model.compile(optimizer='Adam') training_model.save('training_model')
def __init__(self, model_path, alpha): """ Initialize model """ with tf.keras.utils.CustomObjectScope({'tf': tf}): self.base_model = K.models.load_model(model_path) self.alpha = alpha A = K.Input(shape=(96, 96, 3)) P = K.Input(shape=(96, 96, 3)) N = K.Input(shape=(96, 96, 3)) inputs = [A, P, N] X_a = self.base_model(A) X_p = self.base_model(P) X_n = self.base_model(N) encoded_input = [X_a, X_p, X_n] decoded = TripletLoss(alpha=alpha)(encoded_input) decoder = K.models.Model(inputs, decoded) self.training_model = decoder self.training_model.compile(optimizer='Adam') self.training_model.save
num_feats = 3 closs_weight = 1 feat_dim = 2300 learningRate = 1e-2 hidden_sizes = [32, 64, 128, 256] num_classes = 2300 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') network = Network(num_feats, hidden_sizes, num_classes) cuda = torch.cuda.is_available() device = torch.device("cuda" if cuda else "cpu") network.linear_label = nn.Linear(256, 4600) network.linear_closs = nn.Linear(256, 4600) val_data = val_datasets('validation_trials_verification.txt', 'validation_verification', data_transform_val) val_loader_args = dict(shuffle=False, batch_size= 256, pin_memory=True, num_workers = 8) val_loader = Data.DataLoader(val_data, **val_loader_args) numEpochs = 100 model = nn.Sequential(*list(network.children())[:-3]) criterion = TripletLoss(margin = 0.7) optimizer = optim.Adam(model.parameters(), lr = 0.0001) model.train() model.to(device) train_verification(model, val_loader, 40)
def main(): args = parser.parse_args() if args.output: output_base = args.output else: output_base = './output' exp_name = '-'.join([ datetime.now().strftime("%Y%m%d-%H%M%S"), args.model, args.gp, 'f' + str(args.fold) ]) output_dir = get_outdir(output_base, 'train', exp_name) train_input_root = os.path.join(args.data) batch_size = args.p * args.k num_epochs = args.epochs wav_size = (16000, ) num_classes = 128 # triplet embedding size torch.manual_seed(args.seed) model = model_factory.create_model(args.model, in_chs=1, pretrained=args.pretrained, num_classes=num_classes, drop_rate=args.drop, global_pool=args.gp, embedding_net=True, embedding_norm=2., embedding_act_fn=torch.sigmoid, checkpoint_path=args.initial_checkpoint) dataset_train = dataset.CommandsDataset( root=train_input_root, mode='train', fold=args.fold, wav_size=wav_size, format='spectrogram', train_unknown=False, ) loader_train = data.DataLoader(dataset_train, batch_size=batch_size, pin_memory=True, sampler=dataset.PKSampler(dataset_train, p=args.p, k=args.k), num_workers=args.workers) dataset_eval = dataset.CommandsDataset( root=train_input_root, mode='validate', fold=args.fold, wav_size=wav_size, format='spectrogram', train_unknown=False, ) loader_eval = data.DataLoader(dataset_eval, batch_size=batch_size, pin_memory=True, sampler=dataset.PKSampler(dataset_eval, p=args.p, k=args.k), num_workers=args.workers) train_loss_fn = validate_loss_fn = TripletLoss(margin=0.5, sample=True) train_loss_fn = train_loss_fn.cuda() validate_loss_fn = validate_loss_fn.cuda() opt_params = list(model.parameters()) if args.opt.lower() == 'sgd': optimizer = optim.SGD(opt_params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True) elif args.opt.lower() == 'adam': optimizer = optim.Adam(opt_params, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps) elif args.opt.lower() == 'nadam': optimizer = nadam.Nadam(opt_params, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps) elif args.opt.lower() == 'adadelta': optimizer = optim.Adadelta(opt_params, lr=args.lr, weight_decay=args.weight_decay, eps=args.opt_eps) elif args.opt.lower() == 'rmsprop': optimizer = optim.RMSprop(opt_params, lr=args.lr, alpha=0.9, eps=args.opt_eps, momentum=args.momentum, weight_decay=args.weight_decay) else: assert False and "Invalid optimizer" del opt_params if not args.decay_epochs: print('No decay epoch set, using plateau scheduler.') lr_scheduler = ReduceLROnPlateau(optimizer, patience=10) else: lr_scheduler = None # optionally resume from a checkpoint start_epoch = 0 if args.start_epoch is None else args.start_epoch if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: if 'args' in checkpoint: print(checkpoint['args']) new_state_dict = OrderedDict() for k, v in checkpoint['state_dict'].items(): if k.startswith('module'): name = k[7:] # remove `module.` else: name = k new_state_dict[name] = v model.load_state_dict(new_state_dict) if 'optimizer' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) if 'loss' in checkpoint: train_loss_fn.load_state_dict(checkpoint['loss']) print("=> loaded checkpoint '{}' (epoch {})".format( args.resume, checkpoint['epoch'])) start_epoch = checkpoint[ 'epoch'] if args.start_epoch is None else args.start_epoch else: model.load_state_dict(checkpoint) else: print("=> no checkpoint found at '{}'".format(args.resume)) exit(1) saver = CheckpointSaver(checkpoint_dir=output_dir) if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range( args.num_gpu))).cuda() else: model.cuda() best_loss = None try: for epoch in range(start_epoch, num_epochs): if args.decay_epochs: adjust_learning_rate(optimizer, epoch, initial_lr=args.lr, decay_rate=args.decay_rate, decay_epochs=args.decay_epochs) train_metrics = train_epoch(epoch, model, loader_train, optimizer, train_loss_fn, args, saver=saver, output_dir=output_dir) # save a recovery in case validation blows up saver.save_recovery( { 'epoch': epoch + 1, 'arch': args.model, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'loss': train_loss_fn.state_dict(), 'args': args, 'gp': args.gp, }, epoch=epoch + 1, batch_idx=0) step = epoch * len(loader_train) eval_metrics = validate(step, model, loader_eval, validate_loss_fn, args, output_dir=output_dir) if lr_scheduler is not None: lr_scheduler.step(eval_metrics['eval_loss']) rowd = OrderedDict(epoch=epoch) rowd.update(train_metrics) rowd.update(eval_metrics) with open(os.path.join(output_dir, 'summary.csv'), mode='a') as cf: dw = csv.DictWriter(cf, fieldnames=rowd.keys()) if best_loss is None: # first iteration (epoch == 1 can't be used) dw.writeheader() dw.writerow(rowd) # save proper checkpoint with eval metric best_loss = saver.save_checkpoint( { 'epoch': epoch + 1, 'arch': args.model, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'args': args, 'gp': args.gp, }, epoch=epoch + 1, metric=eval_metrics['eval_loss']) except KeyboardInterrupt: pass if best_loss is not None: print('*** Best loss: {0} (epoch {1})'.format(best_loss[1], best_loss[0]))
#!/usr/bin/env python3 from triplet_loss import TripletLoss print(TripletLoss.__bases__) tl = TripletLoss(0.2) print(tl.alpha) print(sorted(tl.__dict__.keys()))
# 模型运算 # 前向传播过程-拿模型分别跑三张图,生成embedding和loss(在训练阶段的输入是两张图,输出带loss,而验证阶段输入一张图,输出只有embedding) anc_embedding = model(anc_img.cuda()) pos_embedding = model(pos_img.cuda()) neg_embedding = model(neg_img.cuda()) anc_embedding = torch.div(anc_embedding, torch.norm(anc_embedding)) pos_embedding = torch.div(pos_embedding, torch.norm(pos_embedding)) neg_embedding = torch.div(neg_embedding, torch.norm(neg_embedding)) # 损失计算 # 计算这个批次困难样本的三元损失 # 在159行处,调用triplet_loss完成loss的计算 triplet_loss = TripletLoss(margin=0.1).forward(anchor=anc_embedding, positive=pos_embedding, negative=neg_embedding) loss = triplet_loss # 反向传播过程 optimizer_model.zero_grad() # 调用的是loss的tensor本身的backward loss.backward() optimizer_model.step() # 计算这个epoch内的总三元损失和计算损失所用的样本个数 triplet_loss_sum += triplet_loss.item() sample_num += anc_embedding.shape[0] # 计算这个epoch里的平均损失
def train(args, start_batch_idx, text_encoder, image_encoder, optimizer, train_loader, device='cuda'): if args.loss_type == 'hinge': criterion = compute_loss elif args.loss_type == 'hardmining+hinge': triplet_loss = TripletLoss(margin=args.margin) elif args.loss_type == 'dynamic_soft_margin': criterion = DynamicSoftMarginLoss(is_binary=False, nbins=args.batch_size // 2) criterion = criterion.to(device) ##################### # train ##################### wandb.init(project="cookgan_retrieval_model") wandb.config.update(args) pbar = range(args.batches) pbar = tqdm(pbar, initial=start_batch_idx, dynamic_ncols=True, smoothing=0.3) text_encoder.train() image_encoder.train() if device == 'cuda': text_module = text_encoder.module image_module = image_encoder.module else: text_module = text_encoder image_module = image_encoder train_loader = sample_data(train_loader) for batch_idx in pbar: txt, img = next(train_loader) for i in range(len(txt)): txt[i] = txt[i].to(device) img = img.to(device) txt_feat, _ = text_encoder(*txt) img_feat = image_encoder(img) bs = img.shape[0] if args.loss_type == 'hinge': loss = criterion(img_feat, txt_feat, device) elif args.loss_type == 'hardmining+hinge': label = list(range(0, bs)) label.extend(label) label = np.array(label) label = torch.tensor(label).long().to(device) loss = global_loss(triplet_loss, torch.cat((img_feat, txt_feat)), label, normalize_feature=True)[0] elif args.loss_type == 'dynamic_soft_margin': out = torch.cat((img_feat, txt_feat)) loss = criterion(out) optimizer.zero_grad() loss.backward() optimizer.step() wandb.log({'training loss': loss, 'batch_idx': batch_idx}) if batch_idx % 10_000 == 0: ckpt_path = f'{wandb.run.dir}/{batch_idx:>08d}.ckpt' save_model(args, batch_idx, text_module, image_module, optimizer, ckpt_path)
adj_label = adj adj_label = torch.FloatTensor(adj_label.toarray()) adj_train = preprocess_graph(adj) # Model and optimizer model = GCNModelAE_UN(nfeat=features.shape[1], nhid=args.hidden, nclass=args.nclass, dropout=args.dropout) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) triplet_loss = TripletLoss(G, False) indices = [] losses = [] def train(epoch): with torch.autograd.set_detect_anomaly(True): t = time.time() model.train() optimizer.zero_grad() output = model(features, adj_train) # triplet_loss.embeddings = output loss = triplet_loss._batch_hard_triplet_loss(output) # loss = triplet_loss.get_loss_margin() losses.append(loss) indices.append(epoch)
def train_model(epoch, model, optimizer, lr_scheduler, loader, test_loader): global GLOBAL_STEP test_loader_it = iter(test_loader) loss_meter = AverageMeter() val_loss_meter = AverageMeter() acc_meter = AverageMeter() val_acc_meter = AverageMeter() positive_distance_meter = AverageMeter() negative_distance_meter = AverageMeter() model.train() model.to(device) print('=' * 20 + "Model Training" + '=' * 20) triplet_loss_func = TripletLoss(args.margin) # cos_sim_func = nn.CosineSimilarity(dim=1, eps=1e-6) # loss_func = nn.MSELoss() for i, batch in tqdm(enumerate(loader)): start = time.time() model.train() optimizer.zero_grad() model.zero_grad() anchor, positive, negative = batch anchor_feature = model(anchor) positive_feature = model(positive) negative_feature = model(negative) # positive_sim = cos_sim_func(anchor_feature, positive_feature) # negative_sim = cos_sim_func(anchor_feature, negative_feature) # pos_sim_loss = loss_func(positive_sim, torch.tensor([1]*len(anchor)).type(torch.FloatTensor).to(device)) # neg_sim_loss = loss_func(negative_sim, torch.tensor([0]*len(anchor)).type(torch.FloatTensor).to(device)) triplet_loss = triplet_loss_func(anchor_feature, positive_feature, negative_feature) loss = triplet_loss loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_bound) optimizer.step() positive_distance = (anchor_feature - positive_feature).pow(2).sum(1).detach() negative_distance = (anchor_feature - negative_feature).pow(2).sum(1).detach() acc = torch.gt(negative_distance, positive_distance).type(torch.FloatTensor).mean() loss_meter.update(loss.item()) acc_meter.update(acc.item()) positive_distance_meter.update(positive_distance.mean().item()) negative_distance_meter.update(negative_distance.mean().item()) try: batch = next(test_loader_it) except: test_loader_it = iter(test_loader) batch = next(test_loader_it) eval_loss, eval_acc, _, _ = batch_eval(batch, model) val_loss_meter.update(eval_loss.item()) val_acc_meter.update(eval_acc.item()) end = time.time() used_time = end - start if (GLOBAL_STEP) % args.log_every == 0: lr = optimizer.param_groups[0]['lr'] display = 'epoch=' + str(epoch) + \ '\tglobal_step=%d' % (GLOBAL_STEP) + \ '\tloss=%.4f' % (loss_meter.val) + \ '\tloss_avg=%.4f' % (loss_meter.avg) + \ '\tval_loss=%.4f' % (val_loss_meter.avg) + \ '\tpos_avg=%.4f' % (positive_distance_meter.avg) + \ '\tneg_avg=%.4f' % (negative_distance_meter.avg) + \ '\tacc=%.4f' % (acc_meter.avg) + \ '\tval_acc=%.4f' % (val_acc_meter.avg)+ \ '\tlr=%.6f' % (lr) + \ '\t|g|=%.4f' % (grad_norm) + \ '\ttime=%.2fit/s' % (1. / used_time) tqdm.write(display) save_mode(epoch=epoch, model=model, optimizer=optimizer, lr_scheduler=lr_scheduler) GLOBAL_STEP += 1 return
#!/usr/bin/env python3 import numpy as np import tensorflow as tf from triplet_loss import TripletLoss np.random.seed(0) tl = TripletLoss(0.2) A = np.random.uniform(0, 1, (2, 128)) P = np.random.uniform(0, 1, (2, 128)) N = np.random.uniform(0, 1, (2, 128)) with tf.Session() as sess: loss = tl.triplet_loss([A, P, N]) print(type(loss)) print(loss.eval())
embedding = embedding * alpha return embedding if __name__ == '__main__': import pdb #pdb.set_trace() #pwd = os.path.abspath('./') start_epoch = 0 model = Resnet18Triplet(pretrained=False,embedding_dimension = 256) if torch.cuda.is_available(): model.cuda() print('Using single-gpu training.') # loss fun loss_fun = TripletLoss(margin=0.5).cuda() def adjust_learning_rate(optimizer, epoch): if epoch<30: lr = 0.125 elif (epoch>=30) and (epoch<60): lr = 0.0625 elif (epoch >= 60) and (epoch < 90): lr = 0.0155 elif (epoch >= 90) and (epoch < 120): lr = 0.003 elif (epoch>=120) and (epoch<160): lr = 0.0001 else: lr = 0.00006 for param_group in optimizer.param_groups:
def __init__(self, model='test', model_name='resnet50_ibn_a', model_path='', last_stride=1): super(Baseline, self).__init__() if (model_name == 'resnet50_ibn_a'): self.in_planes = 2048 self.base = resnet50_ibn_a(last_stride=last_stride) print('Model name = {}'.format(model_name)) if (model_name == 'mobilfacenet'): self.in_planes = 512 self.base = MobileFaceNet(512) print('Model name = {}'.format(model_name)) if (model_name == 'model_ir_se50'): self.in_planes = 512 self.base = Backbone(50, 'ir_se') print('Model name = {}'.format(model_name)) if (model_name == 'se_resnet50'): self.in_planes = 2048 self.base = SENet(block=SEResNetBottleneck, layers=[3, 4, 6, 3], groups=1, reduction=16, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, last_stride=last_stride) print('Model name = {}'.format(model_name)) if (model_name == 'AlexNet'): self.base = AlexNet() # self.base.load_param('alexnet-owt-4df8aa71.pth') self.base.apply(weight_init) if (model_name == 'MiniXception'): self.base = MiniXception() self.base.apply(weight_init) if (model_name == 'ConvNet'): self.base = ConvNet() self.base.apply(weight_init) if (model_name == 'PretrConvNet'): self.base = PretrConvNet() self.base.apply(weight_init) if (model_name == 'MixNet'): self.base = MixNet() # if(model == 'train'): # self.base.load_param(model_path) self.fc_lms = nn.Linear(136, 256, bias=True) self.bn_lms = nn.BatchNorm1d(256) self.fc_head = nn.Linear(512, 250, bias=False) self.bn_head = nn.BatchNorm1d(250) self.bn_head.bias.requires_grad_(False) # no shift self.classifier = nn.Linear(250, 50, bias=False) self.relu = nn.ReLU(inplace=True) self.fc_lms.apply(weights_init_kaiming) self.bn_lms.apply(weights_init_kaiming) self.fc_head.apply(weights_init_classifier) self.bn_head.apply(weights_init_kaiming) self.classifier.apply(weights_init_classifier) self.dropout = nn.Dropout(p=0.6) weight = [ 0.3, 0.3, 0.3, 0.3, 0.37, 0.43, 0.37, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.38, 0.3, 0.3, 0.3, 0.46, 0.3, 0.3, 0.52, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.47, 0.3, 0.3, 0.57, 0.3, 0.48, 0.3, 0.68, 0.3, 0.3 ] weight = np.array(weight) * 10 self.weight = torch.tensor(weight, dtype=torch.float32).cuda() self.criterion = nn.CrossEntropyLoss() self.xent = CrossEntropyLabelSmooth(num_classes=50) self.triplet = TripletLoss(0.3)
neg_img = batch_sample['neg_img'].to(device) # 模型运算 # 前向传播过程-拿模型分别跑三张图,生成embedding和loss(在训练阶段的输入是两张图,输出带loss,而验证阶段输入一张图,输出只有embedding) anc_embedding = model(anc_img) pos_embedding = model(pos_img) neg_embedding = model(neg_img) anc_embedding = torch.div(anc_embedding, torch.norm(anc_embedding)) pos_embedding = torch.div(pos_embedding, torch.norm(pos_embedding)) neg_embedding = torch.div(neg_embedding, torch.norm(neg_embedding)) # 损失计算 # 计算这个批次困难样本的三元损失 triplet_loss = TripletLoss(0.1) loss = triplet_loss(anc_embedding, pos_embedding, neg_embedding, reduction='mean') # 反向传播过程 optimizer_model.zero_grad() loss.backward() optimizer_model.step() # update the optimizer learning rate adjust_learning_rate(optimizer_model, epoch) # 计算这个epoch内的总三元损失和计算损失所用的样本个数 triplet_loss_sum += loss.item()
def main(): # init model, ResNet18() can be also used here for training # model = WideResNet().to(device) if args.network == 'smallCNN': model = SmallCNN().to(device) elif args.network == 'wideResNet': model = WideResNet().to(device) elif args.network == 'resnet': model = ResNet().to(device) else: model = VGG(args.network, num_classes=10).to(device) sys.stdout = Logger(os.path.join(args.log_dir, args.log_file)) print(model) criterion_tla = TripletLoss(10, args.feat_size) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) if args.fine_tune: base_dir = args.base_dir state_dict = torch.load("{}/{}_ep{}.pt".format(base_dir, args.base_model, args.checkpoint)) opt = torch.load("{}/opt-{}_ep{}.tar".format(base_dir, args.base_model, args.checkpoint)) model.load_state_dict(state_dict) optimizer.load_state_dict(opt) natural_acc = [] robust_acc = [] for epoch in range(1, args.epochs + 1): # adjust learning rate for SGD adjust_learning_rate(optimizer, epoch) start_time = time.time() # adversarial training train(model, device, train_loader, optimizer, criterion_tla, epoch) # evaluation on natural examples print('================================================================') print("Current time: {}".format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) # eval_train(model, device, train_loader) # eval_test(model, device, test_loader) natural_err_total, robust_err_total = eval_adv_test_whitebox(model, device, test_loader) with open(os.path.join(stats_dir, '{}.txt'.format(args.save_model)), "a") as f: f.write("{} {} {}\n".format(epoch, natural_err_total, robust_err_total)) print('using time:', datetime.timedelta(seconds=round(time.time() - start_time))) natural_acc.append(natural_err_total) robust_acc.append(robust_err_total) file_name = os.path.join(stats_dir, '{}_stat{}.npy'.format(args.save_model, epoch)) # np.save(file_name, np.stack((np.array(self.train_loss), np.array(self.test_loss), # np.array(self.train_acc), np.array(self.test_acc), # np.array(self.elasticity), np.array(self.x_grads), # np.array(self.fgsms), np.array(self.pgds), # np.array(self.cws)))) np.save(file_name, np.stack((np.array(natural_acc), np.array(robust_acc)))) # save checkpoint if epoch % args.save_freq == 0: torch.save(model.state_dict(), os.path.join(model_dir, '{}_ep{}.pt'.format(args.save_model, epoch))) torch.save(optimizer.state_dict(), os.path.join(model_dir, 'opt-{}_ep{}.tar'.format(args.save_model, epoch))) print("Ep{}: Model saved as {}.".format(epoch, args.save_model)) print('================================================================')
np.random.seed(args.random_seed) torch.manual_seed(args.random_seed) torch.cuda.manual_seed(args.random_seed) ''' load dataset and prepare data loader ''' print('===> prepare dataloader ...') train_loader, gallery_loader, query_loader = loader(args) ''' load model ''' print('===> prepare model ...') model = Model() if mgpus: model = torch.nn.DataParallel(model, device_ids=list([0, 1])).cuda() elif not mgpus: model.cuda() # load model to gpu ''' define loss ''' criterion = nn.CrossEntropyLoss() t_loss = TripletLoss() ''' setup optimizer ''' optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) ''' setup tensorboard ''' writer = SummaryWriter(os.path.join(args.save_dir, 'train_info')) ''' train model ''' iters = 0 best_acc = 0 best_acc_cos = 0 long = len(train_loader) print_num = int(long / 2) lr = args.lr print('===> start training ...')
return x use_gpu = torch.cuda.is_available() model = Model() #torch.save(model, "./model/mymodel.pth") #model = models.resnet18(pretrained = True) #fc_features = model.fc.in_features #model.fc = torch.nn.Linear(fc_features,5) #model.conv1 = torch.nn.Conv2d(1,8,7,2,3) #model = torch.load("./model/resnet18.pth") #cost = torch.nn.CrossEntropyLoss() cost = TripletLoss() model = model.cuda() cost = cost.cuda() optimizer = torch.optim.Adam(model.parameters()) epoch_n = 5 for epoch in range(epoch_n): running_loss = 0.0 running_correct = 0.0 time = 0 print("Epoch{}/{}".format(epoch, epoch_n)) print("-" * 10) for data in data_loader_train: x_train, y_train = data
#save_path = './model/ft_net_11_15/net_38.pth' #network.load_state_dict(torch.load(save_path)) #return network #model_structure = ft_net(len(class_names)) model = ft_net(len(class_names)) #model = load_network(model_structure) #model = ft_net(len(class_names)) print(model) if use_gpu: model = model.cuda() #criterion = TripletLoss(margin=0.5) triplet = TripletLoss(margin=0.3) criterion = CrossEntropyLabelSmooth(num_classes=len(class_names)) # Decay LR by a factor of 0.1 every 40 epochs ###################################################################### # Train and evaluate # ^^^^^^^^^^^^^^^^^^ # # It should take around 1-2 hours on GPU. # dir_name = os.path.join('./model', name) if os.path.isdir(dir_name): #os.mkdir(dir_name) copyfile('./train_11.py', dir_name + '/train_11.py') copyfile('./model.py', dir_name + '/model.py')