axs_diff[cur_row, 0].errorbar(x[-1] + (x[-1] - x[0]) * 0.14, phadke_max_mean, yerr=phadke_max_sd, color=color_map.colors[1], marker=markers[1], capsize=3) axs_diff[cur_row, 0].errorbar(x[-1] + (x[-1] - x[0]) * 0.12, true_max_mean, yerr=true_max_sd, color=color_map.colors[2], marker=markers[2], capsize=3) # plot spm isb_t_ln = spm_plot(axs_diff[cur_row, 1], x[1:], isb_vs_true, dict(color=color_map.colors[0], alpha=0.25), dict(color=color_map.colors[0])) phadke_t_ln = spm_plot(axs_diff[cur_row, 1], x[1:], phadke_vs_true, dict(color=color_map.colors[1], alpha=0.25), dict(color=color_map.colors[1])) axs_diff_dist[cur_row].axhline(0.05, ls='--') isb_vs_true_dist_ln = axs_diff_dist[cur_row].plot( x[1:], isb_vs_true_dist[1], color=color_map.colors[0]) phadke_vs_true_dist_ln = axs_diff_dist[cur_row].plot( x[1:], phadke_vs_true_dist[1], color=color_map.colors[1]) leg_patch_dist.append(isb_vs_true_dist_ln[0]) leg_patch_dist.append(phadke_vs_true_dist_ln[0]) if idx == 0: leg_patch_mean.append(isb_ln[0])
true_ln = mean_sd_plot( axs_diff0[cur_row, 0], x, true_mean, true_sd, dict(color=color_map.colors[2], alpha=0.25), dict(color=color_map.colors[2], marker=markers[2], markevery=20)) phadke_ln = mean_sd_plot( axs_diff0[cur_row, 0], x, phadke_mean, phadke_sd, dict(color=color_map.colors[1], alpha=0.25), dict(color=color_map.colors[1], marker=markers[1], markevery=20)) isb_ln = mean_sd_plot( axs_diff0[cur_row, 0], x, isb_mean, isb_sd, dict(color=color_map.colors[0], alpha=0.3), dict(color=color_map.colors[0], marker=markers[0], markevery=20)) # plot spm isb_t_ln = spm_plot(axs_diff0[cur_row, 1], x[1:], isb_zero, dict(color=color_map.colors[0], alpha=0.25), dict(color=color_map.colors[0])) phadke_t_ln = spm_plot(axs_diff0[cur_row, 1], x[1:], phadke_zero, dict(color=color_map.colors[1], alpha=0.25), dict(color=color_map.colors[1])) true_t_ln = spm_plot(axs_diff0[cur_row, 1], x[1:], true_zero, dict(color=color_map.colors[2], alpha=0.25), dict(color=color_map.colors[2])) axs_diff0_dist[cur_row].axhline(0.05, ls='--') isb_dist_ln = axs_diff0_dist[cur_row].plot(x[1:], isb_zero_norm[1], color=color_map.colors[0]) phadke_dist_ln = axs_diff0_dist[cur_row].plot( x[1:], phadke_zero_norm[1], color=color_map.colors[1]) true_dist_ln = axs_diff0_dist[cur_row].plot(x[1:],
'FE': 3 })).to_numpy(dtype=np.int) subj_rm = (db_elev_equal['Subject_Short'].map(subj_name_to_number) ).to_numpy() spm_one_way_rm_true = spm1d.stats.anova1rm( all_traj_true_rm[:, 1:], group_rm, subj_rm).inference(alpha=0.05) spm_one_way_rm_isb = spm1d.stats.anova1rm( all_traj_isb_rm[:, 1:], group_rm, subj_rm).inference(alpha=0.05) spm_one_way_rm_phadke = spm1d.stats.anova1rm( all_traj_phadke_rm[:, 1:], group_rm, subj_rm).inference(alpha=0.05) shaded_spm = dict(color=color_map.colors[4], alpha=0.25) line_spm = dict(color=color_map.colors[5]) shaded_spm_rm = dict(color=color_map.colors[6], alpha=0.25) line_spm_rm = dict(color=color_map.colors[7]) one_way_ln_true = spm_plot(axs_plane[0, 1], x[1:], spm_one_way_true, shaded_spm, line_spm) one_way_ln_isb = spm_plot(axs_plane[1, 1], x[1:], spm_one_way_isb, shaded_spm, line_spm) one_way_ln_phadke = spm_plot(axs_plane[2, 1], x[1:], spm_one_way_phadke, shaded_spm, line_spm) one_way_rm_ln_true = spm_plot(axs_plane[0, 1], x[1:], spm_one_way_rm_true, shaded_spm_rm, line_spm_rm) one_way_rm_ln_isb = spm_plot(axs_plane[1, 1], x[1:], spm_one_way_rm_isb, shaded_spm_rm, line_spm_rm) one_way_rm_ln_phadke = spm_plot(axs_plane[2, 1], x[1:], spm_one_way_rm_phadke, shaded_spm_rm, line_spm_rm) mean_lns = []
shaded_m, line_m) f_true_ln = mean_sd_plot(axs_gender[0, 0], x, true_mean_f, true_sd_f, shaded_f, line_f) m_isb_ln = mean_sd_plot(axs_gender[1, 0], x, isb_mean_m, isb_sd_m, shaded_m, line_m) f_isb_ln = mean_sd_plot(axs_gender[1, 0], x, isb_mean_f, isb_sd_f, shaded_f, line_f) m_phadke_ln = mean_sd_plot(axs_gender[2, 0], x, phadke_mean_m, phadke_sd_m, shaded_m, line_m) f_phadke_ln = mean_sd_plot(axs_gender[2, 0], x, phadke_mean_f, phadke_sd_f, shaded_f, line_f) # plot spm spm_shaded = dict(color=color_map.colors[2], alpha=0.25) spm_line = dict(color=color_map.colors[2]) true_spm_ln = spm_plot(axs_gender[0, 1], x[1:], m_v_f_true, spm_shaded, spm_line) isb_spm_ln = spm_plot(axs_gender[1, 1], x[1:], m_v_f_isb, spm_shaded, spm_line) phadke_spm_ln = spm_plot(axs_gender[2, 1], x[1:], m_v_f_phadke, spm_shaded, spm_line) # figure title and legend plt.tight_layout(pad=0.25, h_pad=1.5, w_pad=0.5) fig_gender.suptitle(activity + ' Glenohumeral Axial Rotation Comparison', x=0.5, y=0.99, fontweight='bold') plt.subplots_adjust(top=0.93) axs_gender[0, 0].legend([m_true_ln[0], f_true_ln[0]], ['Male', 'Female'],
..., np.newaxis] gc_vs_ac_orient = spm1d.stats.ttest_paired( all_traj_axial_ac, all_traj_axial_gc).inference(alpha, two_tailed=True) gc_vs_ac_rot = spm1d.stats.ttest_paired( all_traj_axial_ac_norm[:, 1:], all_traj_axial_gc_norm[:, 1:]).inference(alpha, two_tailed=True) gc_vs_ac_rot_norm_start = spm1d.stats.ttest_paired( all_traj_axial_ac_norm_start, all_traj_axial_gc_norm_start).inference(alpha, two_tailed=True) # plot spm cur_row = act_row[activity.lower()] orient_ln = spm_plot(axs_axial_spm[cur_row, 0], x, gc_vs_ac_orient, dict(color=color_map.colors[0], alpha=0.25), dict(color=color_map.colors[0])) rotation_ln = spm_plot(axs_axial_spm[cur_row, 1], x[1:], gc_vs_ac_rot, dict(color=color_map.colors[1], alpha=0.25), dict(color=color_map.colors[1])) rotation_start_ln = spm_plot( axs_axial_spm[cur_row, 2], x, gc_vs_ac_rot_norm_start, dict(color=color_map.colors[2], alpha=0.25), dict(color=color_map.colors[2])) leg_patch_axial_spm.append(orient_ln[0]) leg_patch_axial_spm.append(rotation_start_ln[0]) leg_patch_axial_spm.append(rotation_ln[0]) # figure title and axes legends plt.tight_layout(pad=0.25, h_pad=2.0, w_pad=0.5)
true_sd_lt35, shaded_lt35, line_lt35) gt45_true_ln = mean_sd_plot(axs_age[0, 0], x, true_mean_gt45, true_sd_gt45, shaded_gt45, line_gt45) lt35_isb_ln = mean_sd_plot(axs_age[1, 0], x, isb_mean_lt35, isb_sd_lt35, shaded_lt35, line_lt35) gt45_isb_ln = mean_sd_plot(axs_age[1, 0], x, isb_mean_gt45, isb_sd_gt45, shaded_gt45, line_gt45) lt35_phadke_ln = mean_sd_plot(axs_age[2, 0], x, phadke_mean_lt35, phadke_sd_lt35, shaded_lt35, line_lt35) gt45_phadke_ln = mean_sd_plot(axs_age[2, 0], x, phadke_mean_gt45, phadke_sd_gt45, shaded_gt45, line_gt45) # plot spm spm_shaded = dict(color=color_map.colors[2], alpha=0.25) spm_line = dict(color=color_map.colors[2]) true_spm_ln = spm_plot(axs_age[0, 1], x[1:], lt35_v_gt45_true, spm_shaded, spm_line) isb_spm_ln = spm_plot(axs_age[1, 1], x[1:], lt35_v_gt45_isb, spm_shaded, spm_line) phadke_spm_ln = spm_plot(axs_age[2, 1], x[1:], lt35_v_gt45_phadke, spm_shaded, spm_line) # figure title and legend plt.tight_layout(pad=0.25, h_pad=1.5, w_pad=0.5) fig_age.suptitle(activity + ' Glenohumeral Axial Rotation Comparison', x=0.5, y=0.99, fontweight='bold') plt.subplots_adjust(top=0.93) axs_age[0, 0].legend([lt35_true_ln[0], gt45_true_ln[0]], ['Less Than 35', 'Greater Than 45'], loc='upper left',
true_sd_up, shaded_up, line_up) down_true_ln = mean_sd_plot(axs_updown[0, 0], x, true_mean_down, true_sd_down, shaded_down, line_down) up_isb_ln = mean_sd_plot(axs_updown[1, 0], x, isb_mean_up, isb_sd_up, shaded_up, line_up) down_isb_ln = mean_sd_plot(axs_updown[1, 0], x, isb_mean_down, isb_sd_down, shaded_down, line_down) up_phadke_ln = mean_sd_plot(axs_updown[2, 0], x, phadke_mean_up, phadke_sd_up, shaded_up, line_up) down_phadke_ln = mean_sd_plot(axs_updown[2, 0], x, phadke_mean_down, phadke_sd_down, shaded_down, line_down) # plot spm spm_shaded = dict(color=color_map.colors[2], alpha=0.25) spm_line = dict(color=color_map.colors[2]) true_spm_ln = spm_plot(axs_updown[0, 1], x[1:], up_v_down_true, spm_shaded, spm_line) isb_spm_ln = spm_plot(axs_updown[1, 1], x[1:], up_v_down_isb, spm_shaded, spm_line) phadke_spm_ln = spm_plot(axs_updown[2, 1], x[1:], up_v_down_phadke, spm_shaded, spm_line) # figure title and legend plt.tight_layout(pad=0.25, h_pad=1.5, w_pad=0.5) fig_updown.suptitle( activity + ' Glenohumeral Up vs Down Axial Rotation Comparison', x=0.5, y=0.99, fontweight='bold') plt.subplots_adjust(top=0.93) axs_updown[0, 0].legend([up_true_ln[0], down_true_ln[0]], ['Up', 'Down'],