コード例 #1
0
    def test_anchors(self):
        x = Input((2, ))
        z1 = Dense(2)(x)
        z2 = Activation('relu')(z1)
        y = Dense(1)(z2)

        k_model = Model(x, y)
        k_model.set_weights([
            np.array([[1., 0.], [0., -1.]]),
            np.array([0., 0.]),
            np.array([[1.], [1.]]),
            np.array([0.])
        ])

        model = ModelWrapper(k_model)

        infl_out = InternalInfluence(model,
                                     Cut(2, anchor='out'),
                                     ClassQoI(0),
                                     PointDoi(),
                                     multiply_activation=False)

        infl_in = InternalInfluence(model,
                                    Cut(2, anchor='in'),
                                    ClassQoI(0),
                                    PointDoi(),
                                    multiply_activation=False)

        res_out = infl_out.attributions(np.array([[1., 1.]]))
        res_in = infl_in.attributions(np.array([[1., 1.]]))

        self.assertEqual(res_out.shape, (1, 2))
        self.assertEqual(res_in.shape, (1, 2))
        self.assertTrue(np.allclose(res_out, np.array([[1., 1.]])))
        self.assertTrue(np.allclose(res_in, np.array([[1., 0.]])))
コード例 #2
0
    def test_internal_slice_multiple_layers(self):

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.cut_layer1 = Linear(5, 6)
                this.cut_layer2 = Linear(1, 2)
                this.z3 = Linear(2, 4)
                this.z5 = Linear(10, 7)
                this.y = Linear(7, 3)

            def forward(this, x1, x2):
                z1 = this.cut_layer1(x1)
                z2 = this.cut_layer2(x2)
                z3 = this.z3(z2)
                z4 = cat((z1, z3), 1)
                z5 = this.z5(z4)
                return this.y(z5)

        model = ModelWrapper(M(), [(5,), (1,)])

        infl = InternalInfluence(
            model, Cut(['cut_layer1', 'cut_layer2']), ClassQoI(1), PointDoi())

        res = infl.attributions(
            np.array([[1., 2., 3., 4., 5.]]).astype('float32'),
            np.array([[1.]]).astype('float32'))

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 2))
コード例 #3
0
    def test_internal_slice_multiple_layers(self):
        graph = Graph()

        with graph.as_default():
            x1 = tf.placeholder('float32', (None, 5))
            z1 = x1 @ tf.random.normal((5, 6))
            x2 = tf.placeholder('float32', (None, 1))
            z2 = x2 @ tf.random.normal((1, 2))
            z3 = z2 @ tf.random.normal((2, 4))
            z4 = tf.concat([z1, z3], axis=1)
            z5 = z4 @ tf.random.normal((10, 7))
            y = z5 @ tf.random.normal((7, 3))

        model = ModelWrapper(
            graph, [x1, x2], y, dict(cut_layer1=z1, cut_layer2=z2))

        infl = InternalInfluence(
            model, Cut(['cut_layer1', 'cut_layer2']), ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 2))
コード例 #4
0
    def __get_doi(doi_arg):
        """
        Helper function to get a `DoI` object from more user-friendly primitive 
        arguments.
        """
        if isinstance(doi_arg, DoI):
            # We were already given a DoI, so return it.
            return doi_arg

        elif isinstance(doi_arg, str):
            # We can specify `PointDoi` via the string 'point', or `LinearDoi`
            # via the string 'linear'.
            if doi_arg == 'point':
                return PointDoi()

            elif doi_arg == 'linear':
                return LinearDoi()

            else:
                raise ValueError(
                    'String argument for `doi` must be one of the following:\n'
                    '  - "point"\n'
                    '  - "linear"')

        else:
            raise ValueError('Unrecognized argument type for `doi`')
コード例 #5
0
    def test_internal_multiple_inputs(self):

        class ConcatenateLayer(Module):

            def forward(this, x1, x2):
                return cat((x1, x2), 1)

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.z1 = Linear(5, 6)
                this.concat = ConcatenateLayer()
                this.z3 = Linear(7, 7)
                this.y = Linear(7, 3)

            def forward(this, x1, x2):
                x1 = this.z1(x1)
                z = this.concat(x1, x2)
                z = this.z3(z)
                return this.y(z)

        model = ModelWrapper(M(), [(5,), (1,)])

        infl = InternalInfluence(
            model, Cut('concat', anchor='in'), ClassQoI(1), PointDoi())

        res = infl.attributions(
            np.array([[1., 2., 3., 4., 5.]]).astype('float32'),
            np.array([[1.]]).astype('float32'))

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 1))
コード例 #6
0
    def test_point(self):
        res = PointDoi()(self.z)

        self.assertEqual(len(res), 1, 'PointDoi should return a single point')

        self.assertTrue(np.array_equal(B.as_array(res[0]), B.as_array(self.z)),
                        'Value of point should not change')
コード例 #7
0
    def test_anchors(self):

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.z1 = Linear(2, 2)
                this.z2 = ReLU()
                this.y = Linear(2, 1)

                this.z1.weight.data = B.as_tensor(
                    np.array([[1., 0.], [0., -1.]]).T)
                this.z1.bias.data = B.as_tensor(np.array([0., 0.]))
                this.y.weight.data = B.as_tensor(np.array([[1.], [1.]]).T)
                this.y.bias.data = B.as_tensor(np.array([0.]))

            def forward(this, x):
                z1 = this.z1(x)
                z2 = this.z2(z1)
                return this.y(z2)

        model = ModelWrapper(M(), (2,))

        infl_out = InternalInfluence(
            model,
            Cut('z2', anchor='out'),
            ClassQoI(0),
            PointDoi(),
            multiply_activation=False)

        infl_in = InternalInfluence(
            model,
            Cut('z2', anchor='in'),
            ClassQoI(0),
            PointDoi(),
            multiply_activation=False)

        res_out = infl_out.attributions(np.array([[1., 1.]]))
        res_in = infl_in.attributions(np.array([[1., 1.]]))

        self.assertEqual(res_out.shape, (1, 2))
        self.assertEqual(res_in.shape, (1, 2))
        self.assertTrue(np.allclose(res_out, np.array([[1., 1.]])))
        self.assertTrue(np.allclose(res_in, np.array([[1., 0.]])))
コード例 #8
0
    def test_catch_cut_index_error(self):
        x = Input((2, ))
        z1 = Dense(2)(x)
        z2 = Activation('relu')(z1)
        y = Dense(1)(z2)

        model = ModelWrapper(Model(x, y))

        with self.assertRaises(ValueError):
            infl = InternalInfluence(model, Cut(4), ClassQoI(0), PointDoi())

            infl.attributions(np.array([[1., 1.]]))
コード例 #9
0
    def test_linear_agreement_linear_slice(self):
        c = 4
        infl = InternalInfluence(
            self.model_deep, (Cut(self.layer2), Cut(self.layer3)),
            InternalChannelQoI(c),
            PointDoi(),
            multiply_activation=False)

        res = infl.attributions(self.x)

        self.assertEqual(res.shape, (2, self.internal1_size))

        self.assertTrue(np.allclose(res[0], self.model_deep_weights_2[:, c]))
        self.assertTrue(np.allclose(res[1], self.model_deep_weights_2[:, c]))
コード例 #10
0
    def test_linear_agreement_multiply_activation(self):
        c = 1
        infl = InternalInfluence(
            self.model_lin,
            InputCut(),
            ClassQoI(c),
            PointDoi(),
            multiply_activation=True)

        res = infl.attributions(self.x)

        self.assertEqual(res.shape, (2, self.input_size))

        self.assertTrue(np.allclose(res, self.model_lin_weights[:, c] * self.x))
コード例 #11
0
    def test_idempotence(self):
        infl = InternalInfluence(
            self.model_lin,
            InputCut(),
            MaxClassQoI(),
            PointDoi(),
            multiply_activation=False)

        res1 = infl.attributions(self.x)
        res2 = infl.attributions(self.x)

        self.assertTrue(np.allclose(res1, res2))

        infl_act = InternalInfluence(
            self.model_lin,
            InputCut(),
            MaxClassQoI(),
            PointDoi(),
            multiply_activation=True)

        res1 = infl_act.attributions(self.x)
        res2 = infl_act.attributions(self.x)

        self.assertTrue(np.allclose(res1, res2))
コード例 #12
0
    def test_linear_agreement_linear_slice_multiply_activation(self):
        c = 4
        infl = InternalInfluence(
            self.model_deep, (Cut(self.layer2), Cut(self.layer3)),
            InternalChannelQoI(c),
            PointDoi(),
            multiply_activation=True)

        res = infl.attributions(self.x)

        self.assertEqual(res.shape, (2, self.internal1_size))

        z = self.model_deep.fprop((self.x,), to_cut=Cut(self.layer2))[0]

        self.assertTrue(np.allclose(res, self.model_deep_weights_2[:, c] * z))
コード例 #13
0
    def test_catch_cut_name_error(self):
        graph = Graph()

        with graph.as_default():
            x = tf.placeholder('float32', (None, 2))
            z1 = x @ tf.random.normal((2, 2))
            z2 = relu(z1)
            y = z2 @ tf.random.normal((2, 1))

        model = ModelWrapper(graph, x, y)

        with self.assertRaises(ValueError):
            infl = InternalInfluence(
                model, Cut('not_a_real_layer'), ClassQoI(0), PointDoi())

            infl.attributions(np.array([[1., 1.]]))
コード例 #14
0
    def test_multiple_inputs(self):
        x1 = Input((5, ))
        z1 = Dense(6)(x1)
        x2 = Input((1, ))
        z2 = Concatenate()([z1, x2])
        z3 = Dense(7)(z2)
        y = Dense(3)(z3)

        model = ModelWrapper(Model([x1, x2], y))

        infl = InternalInfluence(model, InputCut(), ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 5))
        self.assertEqual(res[1].shape, (1, 1))
コード例 #15
0
    def test_multiple_inputs(self):
        graph = Graph()

        with graph.as_default():
            x1 = tf.placeholder('float32', (None, 5))
            z1 = x1 @ tf.random.normal((5, 6))
            x2 = tf.placeholder('float32', (None, 1))
            z2 = tf.concat([z1, x2], axis=1)
            z3 = z2 @ tf.random.normal((7, 7))
            y = z3 @ tf.random.normal((7, 3))

        model = ModelWrapper(graph, [x1, x2], y)

        infl = InternalInfluence(model, InputCut(), ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 5))
        self.assertEqual(res[1].shape, (1, 1))
コード例 #16
0
    def test_internal_slice_multiple_layers(self):
        x1 = Input((5, ))
        z1 = Dense(6, name='cut_layer1')(x1)
        x2 = Input((1, ))
        z2 = Dense(2, name='cut_layer2')(x2)
        z3 = Dense(4)(z2)
        z4 = Concatenate()([z1, z3])
        z5 = Dense(7)(z4)
        y = Dense(3)(z5)

        model = ModelWrapper(Model([x1, x2], y))

        infl = InternalInfluence(model, Cut(['cut_layer1', 'cut_layer2']),
                                 ClassQoI(1), PointDoi())

        res = infl.attributions(
            [np.array([[1., 2., 3., 4., 5.]]),
             np.array([[1.]])])

        self.assertEqual(len(res), 2)
        self.assertEqual(res[0].shape, (1, 6))
        self.assertEqual(res[1].shape, (1, 2))
コード例 #17
0
    def test_catch_cut_name_error(self):

        class M(Module):

            def __init__(this):
                super(M, this).__init__()
                this.z1 = Linear(2, 2)
                this.z2 = ReLU()
                this.y = Linear(2, 1)

            def forward(this, x):
                z1 = this.z1(x)
                z2 = this.z2(z1)
                return this.y(z2)

        model = ModelWrapper(M(), (2,))

        with self.assertRaises(ValueError):
            infl = InternalInfluence(
                model, Cut('not_a_real_layer'), ClassQoI(0), PointDoi())

            infl.attributions(np.array([[1., 1.]]).astype('float32'))
コード例 #18
0
    def test_distributional_linearity_internal_influence(self):
        x1, x2 = self.x[0:1], self.x[1:]
        p1, p2 = 0.25, 0.75

        class DistLinDoI(DoI):
            '''
            Represents the distribution of interest that weights `z` with
            probability 1/4 and `z + diff` with probability 3/4.
            '''

            def __init__(self, diff):
                super(DistLinDoI, self).__init__()
                self.diff = diff

            def __call__(self, z):
                return [z, z + self.diff, z + self.diff, z + self.diff]

        infl_pt = InternalInfluence(
            self.model_deep,
            Cut(self.layer2),
            ClassQoI(0),
            PointDoi(),
            multiply_activation=False)

        attr1 = infl_pt.attributions(x1)
        attr2 = infl_pt.attributions(x2)

        infl_dl = InternalInfluence(
            self.model_deep,
            Cut(self.layer2),
            ClassQoI(0),
            DistLinDoI(x2 - x1),
            multiply_activation=False)

        attr12 = infl_dl.attributions(x1)

        self.assertTrue(np.allclose(attr12, p1 * attr1 + p2 * attr2))
コード例 #19
0
    def __init__(self,
                 model,
                 layer,
                 channel,
                 channel_axis=B.channel_axis,
                 agg_fn=None,
                 doi=None,
                 blur=None,
                 threshold=0.5,
                 masked_opacity=0.2,
                 combine_channels=True,
                 use_attr_as_opacity=None,
                 positive_only=None):
        """
        Configures the default parameters for the `__call__` method (these can 
        be overridden by passing in values to `__call__`).

        Parameters:
            model:
                The wrapped model whose channel we're visualizing.

            layer:
                The identifier (either index or name) of the layer in which the 
                channel we're visualizing resides.

            channel:
                Index of the channel (for convolutional layers) or internal 
                neuron (for fully-connected layers) that we'd like to visualize.

            channel_axis:
                If different from the channel axis specified by the backend, the
                supplied `channel_axis` will be used if operating on a 
                convolutional layer with 4-D image format.

            agg_fn:
                Function with which to aggregate the remaining dimensions 
                (except the batch dimension) in order to get a single scalar 
                value for each channel; If `None`, a sum over each neuron in the
                channel will be taken. This argument is not used when the 
                channels are scalars, e.g., for dense layers.

            doi:
                The distribution of interest to use when computing the input
                attributions towards the specified channel. If `None`, 
                `PointDoI` will be used.

            blur:
                Gives the radius of a Gaussian blur to be applied to the 
                attributions before visualizing. This can be used to help focus
                on salient regions rather than specific salient pixels.

            threshold:
                Value in the range [0, 1]. Attribution values at or  below the 
                percentile given by `threshold` (after normalization, blurring,
                etc.) will be masked.

            masked_opacity: 
                Value in the range [0, 1] specifying the opacity for the parts
                of the image that are masked.

            combine_channels:
                If `True`, the attributions will be averaged across the channel
                dimension, resulting in a 1-channel attribution map.

            use_attr_as_opacity:
                If `True`, instead of using `threshold` and `masked_opacity`,
                the opacity of each pixel is given by the 0-1-normalized 
                attribution value.

            positive_only:
                If `True`, only pixels with positive attribution will be 
                unmasked (or given nonzero opacity when `use_attr_as_opacity` is
                true).
        """

        self.mask_visualizer = MaskVisualizer(blur, threshold, masked_opacity,
                                              combine_channels,
                                              use_attr_as_opacity,
                                              positive_only)

        self.infl_input = InternalInfluence(
            model, (InputCut(), Cut(layer)),
            InternalChannelQoI(channel, channel_axis, agg_fn),
            PointDoi() if doi is None else doi)