コード例 #1
0
ファイル: brfss.py プロジェクト: whatscottcodes/books_courses
def MakeNormalPlot(weights):
    """Generates a normal probability plot of birth weights.

    weights: sequence
    """
    mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01)
    std = math.sqrt(var)

    xs = [-5, 5]
    xs, ys = thinkstats2.FitLine(xs, mean, std)
    thinkplot.Plot(xs, ys, color='0.8', label='model')

    xs, ys = thinkstats2.NormalProbability(weights)
    thinkplot.Plot(xs, ys, label='weights')
コード例 #2
0
def main(filename='mystery0.dat'):
    data = ReadFile(filename)
    cdf = thinkstats2.Cdf(data)

    thinkplot.PrePlot(rows=2, cols=3)
    thinkplot.SubPlot(1)
    thinkplot.Cdf(cdf)
    thinkplot.Config(title='linear')

    thinkplot.SubPlot(2)
    scale = thinkplot.Cdf(cdf, xscale='log')
    thinkplot.Config(title='logx', **scale)

    thinkplot.SubPlot(3)
    scale = thinkplot.Cdf(cdf, transform='exponential')
    thinkplot.Config(title='expo', **scale)

    thinkplot.SubPlot(4)
    xs, ys = thinkstats2.NormalProbability(data)
    thinkplot.Plot(xs, ys)
    thinkplot.Config(title='normal')

    thinkplot.SubPlot(5)
    scale = thinkplot.Cdf(cdf, transform='pareto')
    thinkplot.Config(title='pareto', **scale)

    thinkplot.SubPlot(6)
    scale = thinkplot.Cdf(cdf, transform='weibull')
    thinkplot.Config(title='weibull', **scale)

    thinkplot.Show(legend=False)
コード例 #3
0
def ResampleSurvival(resp, iters=101):
    """Resamples respondents and estimates the survival function.

    resp: DataFrame of respondents
    iters: number of resamples
    """
    _, sf = EstimateMarriageSurvival(resp)
    thinkplot.Plot(sf)

    low, high = resp.agemarry.min(), resp.agemarry.max()
    ts = np.arange(low, high, 1 / 12.0)

    ss_seq = []
    for _ in range(iters):
        sample = thinkstats2.ResampleRowsWeighted(resp)
        _, sf = EstimateMarriageSurvival(sample)
        ss_seq.append(sf.Probs(ts))

    low, high = thinkstats2.PercentileRows(ss_seq, [5, 95])
    thinkplot.FillBetween(ts, low, high, color='gray', label='90% CI')
    thinkplot.Save(root='survival3',
                   xlabel='age (years)',
                   ylabel='prob unmarried',
                   xlim=[12, 46],
                   ylim=[0, 1],
                   formats=FORMATS)
コード例 #4
0
def EstimateMarriageSurvivalByDecade(groups, **options):
    """Groups respondents by decade and plots survival curves.

    groups: GroupBy object
    """
    thinkplot.PrePlot(len(groups))
    for _, group in groups:
        _, sf = EstimateMarriageSurvival(group)
        thinkplot.Plot(sf, **options)
コード例 #5
0
def AddLabelsByDecade(groups, **options):
    """Draws fake points in order to add labels to the legend.

    groups: GroupBy object
    """
    thinkplot.PrePlot(len(groups))
    for name, _ in groups:
        label = '%d0s' % name
        thinkplot.Plot([15], [1], label=label, **options)
コード例 #6
0
def MakeFigures(df):
    """Plots the CDF of income in several forms.
    """
    xs, ps = df.income.values, df.ps.values
    cdf = SmoothCdf(xs, ps, label='data')
    cdf_log = SmoothCdf(np.log10(xs), ps, label='data')

    # linear plot
    thinkplot.Cdf(cdf)
    thinkplot.show(root='hinc_linear', xlabel='household income', ylabel='CDF')

    # pareto plot
    # for the model I chose parameters by hand to fit the tail
    xs, ys = thinkstats2.RenderParetoCdf(xmin=55000,
                                         alpha=2.5,
                                         low=0,
                                         high=250000)
    thinkplot.Plot(xs, 1 - ys, label='model', color='0.8')

    thinkplot.Cdf(cdf, complement=True)
    thinkplot.show(root='hinc_pareto',
                   xlabel='log10 household income',
                   ylabel='CCDF',
                   xscale='log',
                   yscale='log')

    # lognormal plot
    # for the model I estimate mu and sigma using
    # percentile-based statistics
    median = cdf_log.Percentile(50)
    iqr = cdf_log.Percentile(75) - cdf_log.Percentile(25)
    std = iqr / 1.349

    # choose std to match the upper tail
    std = 0.35
    print(median, std)

    xs, ps = thinkstats2.RenderNormalCdf(median, std, low=3.5, high=5.5)
    thinkplot.Plot(xs, ps, label='model', color='0.8')

    thinkplot.Cdf(cdf_log)
    thinkplot.show(root='hinc_normal',
                   xlabel='log10 household income',
                   ylabel='CDF')
コード例 #7
0
def MakeNormalPlot(weights, term_weights):
    """Generates a normal probability plot of birth weights."""

    mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01)
    std = math.sqrt(var)

    xs = [-4, 4]
    fxs, fys = thinkstats2.FitLine(xs, mean, std)
    thinkplot.Plot(fxs, fys, linewidth=4, color='0.8')

    thinkplot.PrePlot(2)
    xs, ys = thinkstats2.NormalProbability(weights)
    thinkplot.Plot(xs, ys, label='all live')

    xs, ys = thinkstats2.NormalProbability(term_weights)
    thinkplot.Plot(xs, ys, label='full term')
    thinkplot.Save(root='analytic_birthwgt_normal',
                   title='Normal probability plot',
                   xlabel='Standard deviations from mean',
                   ylabel='Birth weight (lbs)')
コード例 #8
0
def PlotMarriageData(resp):
    """Plots hazard and survival functions.

    resp: DataFrame of respondents
    """
    hf, sf = EstimateMarriageSurvival(resp)

    thinkplot.PrePlot(rows=2)
    thinkplot.Plot(hf)
    thinkplot.Config(ylabel='hazard', legend=False)

    thinkplot.SubPlot(2)
    thinkplot.Plot(sf)
    thinkplot.Save(root='survival2',
                   xlabel='age (years)',
                   ylabel='prob unmarried',
                   ylim=[0, 1],
                   legend=False,
                   formats=FORMATS)
    return sf
コード例 #9
0
def MakeParetoCdf2():
    """Generates a plot of the CDF of height in Pareto World."""
    xmin = 100
    alpha = 1.7
    xs, ps = thinkstats2.RenderParetoCdf(xmin, alpha, 0, 1000.0, n=100)
    thinkplot.Plot(xs, ps)

    thinkplot.Save(root='analytic_pareto_height',
                   title='Pareto CDF',
                   xlabel='height (cm)',
                   ylabel='CDF',
                   legend=False)
コード例 #10
0
def PlotSurvival(complete):
    """Plots survival and hazard curves.

    complete: list of complete lifetimes
    """
    thinkplot.PrePlot(3, rows=2)

    cdf = thinkstats2.Cdf(complete, label='cdf')
    sf = MakeSurvivalFromCdf(cdf, label='survival')
    print(cdf[13])
    print(sf[13])

    thinkplot.Plot(sf)
    thinkplot.Cdf(cdf, alpha=0.2)
    thinkplot.Config()

    thinkplot.SubPlot(2)
    hf = sf.MakeHazardFunction(label='hazard')
    print(hf[39])
    thinkplot.Plot(hf)
    thinkplot.Config(ylim=[0, 0.75])
コード例 #11
0
def PlotHazard(complete, ongoing):
    """Plots the hazard function and survival function.

    complete: list of complete lifetimes
    ongoing: list of ongoing lifetimes
    """
    # plot S(t) based on only complete pregnancies
    sf = MakeSurvivalFromSeq(complete)
    thinkplot.Plot(sf, label='old S(t)', alpha=0.1)

    thinkplot.PrePlot(2)

    # plot the hazard function
    hf = EstimateHazardFunction(complete, ongoing)
    thinkplot.Plot(hf, label='lams(t)', alpha=0.5)

    # plot the survival function
    sf = hf.MakeSurvival()

    thinkplot.Plot(sf, label='S(t)')
    thinkplot.Show(xlabel='t (weeks)')
コード例 #12
0
def MakeParetoCdf():
    """Generates a plot of the Pareto CDF."""
    xmin = 0.5

    thinkplot.PrePlot(3)
    for alpha in [2.0, 1.0, 0.5]:
        xs, ps = thinkstats2.RenderParetoCdf(xmin, alpha, 0, 10.0, n=100)
        thinkplot.Plot(xs, ps, label=r'$\alpha=%g$' % alpha)

    thinkplot.Save(root='analytic_pareto_cdf',
                   title='Pareto CDF',
                   xlabel='x',
                   ylabel='CDF')
コード例 #13
0
def MakeExpoCdf():
    """Generates a plot of the exponential CDF."""

    thinkplot.PrePlot(3)
    for lam in [2.0, 1, 0.5]:
        xs, ps = thinkstats2.RenderExpoCdf(lam, 0, 3.0, 50)
        label = r'$\lambda=%g$' % lam
        thinkplot.Plot(xs, ps, label=label)

    thinkplot.Save(root='analytic_expo_cdf',
                   title='Exponential CDF',
                   xlabel='x',
                   ylabel='CDF')
コード例 #14
0
def PlotRemainingLifetime(sf1, sf2):
    """Plots remaining lifetimes for pregnancy and age at first marriage.

    sf1: SurvivalFunction for pregnancy length
    sf2: SurvivalFunction for age at first marriage
    """
    thinkplot.PrePlot(cols=2)
    rem_life1 = sf1.RemainingLifetime()
    thinkplot.Plot(rem_life1)
    thinkplot.Config(title='remaining pregnancy length',
                     xlabel='weeks',
                     ylabel='mean remaining weeks')

    thinkplot.SubPlot(2)
    func = lambda pmf: pmf.Percentile(50)
    rem_life2 = sf2.RemainingLifetime(filler=np.inf, func=func)
    thinkplot.Plot(rem_life2)
    thinkplot.Config(title='years until first marriage',
                     ylim=[0, 15],
                     xlim=[11, 31],
                     xlabel='age (years)',
                     ylabel='median remaining years')

    thinkplot.Save(root='survival6', formats=FORMATS)
コード例 #15
0
def PlotPredictionsByDecade(groups, **options):
    """Groups respondents by decade and plots survival curves.

    groups: GroupBy object
    """
    hfs = []
    for _, group in groups:
        hf, sf = EstimateMarriageSurvival(group)
        hfs.append(hf)

    thinkplot.PrePlot(len(hfs))
    for i, hf in enumerate(hfs):
        if i > 0:
            hf.Extend(hfs[i - 1])
        sf = hf.MakeSurvival()
        thinkplot.Plot(sf, **options)
コード例 #16
0
def PlotConditionalSurvival(durations):
    """Plots conditional survival curves for a range of t0.

    durations: list of durations
    """
    pmf = thinkstats2.Pmf(durations)

    times = [8, 16, 24, 32]
    thinkplot.PrePlot(len(times))

    for t0 in times:
        sf = ConditionalSurvival(pmf, t0)
        label = 't0=%d' % t0
        thinkplot.Plot(sf, label=label)

    thinkplot.Show()
コード例 #17
0
ファイル: brfss.py プロジェクト: whatscottcodes/books_courses
def MakeNormalModel(weights):
    """Plots a CDF with a Normal model.

    weights: sequence
    """
    cdf = thinkstats2.Cdf(weights, label='weights')

    mean, var = thinkstats2.TrimmedMeanVar(weights)
    std = math.sqrt(var)
    print('n, mean, std', len(weights), mean, std)

    xmin = mean - 4 * std
    xmax = mean + 4 * std

    xs, ps = thinkstats2.RenderNormalCdf(mean, std, xmin, xmax)
    thinkplot.Plot(xs, ps, label='model', linewidth=4, color='0.8')
    thinkplot.Cdf(cdf)
コード例 #18
0
def MakeExampleNormalPlot():
    """Generates a sample normal probability plot.
    """
    n = 1000
    thinkplot.PrePlot(3)

    mus = [0, 1, 5]
    sigmas = [1, 1, 2]
    for mu, sigma in zip(mus, sigmas):
        sample = np.random.normal(mu, sigma, n)
        xs, ys = thinkstats2.NormalProbability(sample)
        label = '$\mu=%d$, $\sigma=%d$' % (mu, sigma)
        thinkplot.Plot(xs, ys, label=label)

    thinkplot.Save(root='analytic_normal_prob_example',
                   title='Normal probability plot',
                   xlabel='standard normal sample',
                   ylabel='sample values')
コード例 #19
0
def MakeNormalCdf():
    """Generates a plot of the normal CDF."""

    thinkplot.PrePlot(3)

    mus = [1.0, 2.0, 3.0]
    sigmas = [0.5, 0.4, 0.3]
    for mu, sigma in zip(mus, sigmas):
        xs, ps = thinkstats2.RenderNormalCdf(mu=mu,
                                             sigma=sigma,
                                             low=-1.0,
                                             high=4.0)
        label = r'$\mu=%g$, $\sigma=%g$' % (mu, sigma)
        thinkplot.Plot(xs, ps, label=label)

    thinkplot.Save(root='analytic_normal_cdf',
                   title='Normal CDF',
                   xlabel='x',
                   ylabel='CDF',
                   loc=2)
コード例 #20
0
def MakeNormalModel(weights):
    """Plot the CDF of birthweights with a normal model."""

    # estimate parameters: trimming outliers yields a better fit
    mu, var = thinkstats2.TrimmedMeanVar(weights, p=0.01)
    print('Mean, Var', mu, var)

    # plot the model
    sigma = math.sqrt(var)
    print('Sigma', sigma)
    xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=12.5)

    thinkplot.Plot(xs, ps, label='model', color='0.8')

    # plot the data
    cdf = thinkstats2.Cdf(weights, label='data')

    thinkplot.PrePlot(1)
    thinkplot.Cdf(cdf)
    thinkplot.Save(root='analytic_birthwgt_model',
                   title='Birth weights',
                   xlabel='birth weight (lbs)',
                   ylabel='CDF')