コード例 #1
0
def test_tag_propagation():
    x = Collection.from_array([1, 2, 3], tags=Tags({quantity: 'acceleration', body_part: 'arm_left'}))
    y = Collection.from_array([1, 2, 3], tags=Tags({quantity: 'acceleration', body_part: 'arm_right'}))
    z = Collection.from_array([1, 2, 3], tags=Tags({quantity: 'position', body_part: 'leg_right'}))
    assert quantity in Ratio().transform(x, y).tags
    assert Ratio().transform(x, y).tags.quantity == 'acceleration'
    assert body_part in Ratio().transform(x, y).tags
    assert Ratio().transform(x, y).tags.body_part == 'arm'
    assert body_part in Ratio().transform(y, z).tags
    assert Ratio().transform(y, z).tags.body_part == 'right'
    assert quantity not in Ratio().transform(x, z).tags
    assert body_part not in Ratio().transform(x, z).tags
コード例 #2
0
def test_entropy(x):
    x = Collection.from_array(np.abs(x.values) + 1)  # ensure that values > 0
    result = Entropy().transform(x)
    for i, a in series(x):
        actual = result.values[i]
        expected = stats.entropy(a)
        np.testing.assert_almost_equal(actual, expected)
コード例 #3
0
def test_sample_entropy(x):
    x = Collection.from_array([1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5])
    result = SampleEntropy().transform(x)
    actual = result.values
    expected = 0.55961579
    # Computed using Physionet sample entropy implementation:
    # https://physionet.org/content/sampen/1.0.0/
    np.testing.assert_almost_equal(actual, expected)
コード例 #4
0
def test_tags():
    x = Collection.from_array([1, 2, 3])
    x.tags.add(quantity, 'acceleration')
    assert x.tags[quantity] == 'acceleration'
    assert x.tags['quantity'] == 'acceleration'
    assert x.tags.quantity == 'acceleration'
    x.tags.remove(quantity)
    assert x.tags[quantity] is None
    assert x.tags['quantity'] is None
コード例 #5
0
def test_energy_ratio():
    x = Collection.from_array([1, 2, 3, 4, 5, 6, 7, 8])
    chunks = [[1, 2, 3], [4, 5, 6], [7, 8]]
    result = EnergyRatio(chunks=3).transform(x).values
    assert result.shape == (1, 1, 3)
    total = np.sum(np.square([1, 2, 3, 4, 5, 6, 7, 8]))
    np.testing.assert_almost_equal(result[0, 0, 0], np.sum(np.square(chunks[0])) / total)
    np.testing.assert_almost_equal(result[0, 0, 1], np.sum(np.square(chunks[1])) / total)
    np.testing.assert_almost_equal(result[0, 0, 2], np.sum(np.square(chunks[2])) / total)
コード例 #6
0
def test_to_dataframe_attributes():
    collection = Collection.from_array([
        [[10, 20, 30]],
        [[40, 50, 60]],
    ], dims=['x', 'y', 'z'])
    print(collection.id)
    df = collection.to_dataframe()
    np.testing.assert_equal(df.columns.values, ['id', 'x', 'y', 'z'])
    np.testing.assert_equal(df.values, [
        [0, 10, 20, 30],
        [1, 40, 50, 60],
    ])
コード例 #7
0
ファイル: synthetic.py プロジェクト: vishalbelsare/tsfuse
def brownian(N=10, t=100, d=2, random_state=None, **kwargs):
    """
    Generate Brownian motion data.

    The implementation is based on the SciPy Cookbook. [1]_

    Parameters
    ----------
    N : int, optional
        Number of windows. Default: 10
    t : int, optional
        Number of time stamps in each window. Default: 100
    d : int, optional
        Number of dimensions. Default: 2
    random_state : int, optional
        Random state initialization.
    **kwargs
        Keyword arguments to pass to the :class:`~tsfuse.data.Collection` constructor.

    Returns
    -------
    generated : Collection

    References
    ----------
    .. [1] https://scipy-cookbook.readthedocs.io/items/BrownianMotion.html
    """
    if random_state is not None:
        np.random.seed(random_state)

    def generate(n, delta=0.25, dt=0.1, initial=0.0):
        x = np.empty(n)
        x[0] = initial
        for k in range(1, n):
            x[k] = x[k - 1] + norm.rvs(scale=delta**2 * dt)
        return x

    values = np.empty((N, t, d), dtype=float)
    for i in range(N):
        for j in range(d):
            values[i, :, j] = generate(t)

    return Collection.from_array(values, **kwargs)
コード例 #8
0
def test_to_dataframe_time_series_variable_length():
    collection = Collection.from_array([
        [[10, 20, 30],
         [11, 21, 31],
         [12, 22, 33],],
        [[40, 50, 60],
         [41, 51, 61],],
    ], time=[
        [0, 1, 2],
        [0, 1],
    ], dims=['x', 'y', 'z'])
    df = collection.to_dataframe()
    np.testing.assert_equal(df.columns.values, ['id', 'time', 'x', 'y', 'z'])
    np.testing.assert_equal(df.values, [
        [0, 0, 10, 20, 30],
        [0, 1, 11, 21, 31],
        [0, 2, 12, 22, 33],
        [1, 0, 40, 50, 60],
        [1, 1, 41, 51, 61],
    ])
コード例 #9
0
def test_has_duplicate_max_false():
    x = Collection.from_array([1, 1, 2, 3])
    actual = HasDuplicateMax().transform(x).values
    np.testing.assert_equal(actual, False)
コード例 #10
0
def test_roots():
    x = Collection.from_array([-1, 0, 1])
    actual = Roots().transform(x).values
    np.testing.assert_almost_equal(actual.flatten(), [1, -1])
コード例 #11
0
def test_create_collection_series():
    x = Collection.from_array([[1, 2, 3], [4, 5, 6]])
    assert x.shape == (1, 2, 3)
    assert x.type == Type.SERIES
コード例 #12
0
def test_number_of_peaks_support_1():
    x = Collection.from_array([1, 2, 1, 2, 3, 2, 3])
    actual = NumberPeaks(support=1).transform(x).values
    np.testing.assert_equal(actual, 2)
コード例 #13
0
def test_arg_max():
    x = Collection.from_array([1, 2, 3, 4, 3, 2, 1])
    actual = ArgMax().transform(x).values
    np.testing.assert_equal(actual, 3)
コード例 #14
0
def test_longest_strike_above_mean_three():
    x = Collection.from_array([0, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0])
    actual = LongestStrikeAboveMean().transform(x).values
    np.testing.assert_equal(actual, 3)
コード例 #15
0
def test_number_crossings_one():
    x = Collection.from_array([0, 2, 3, 4])
    actual = NumberCrossings().transform(x).values
    np.testing.assert_equal(actual, 1)
コード例 #16
0
def test_create_collection_windows():
    x = Collection.from_array([[[1, 2, 3], [4, 5, 6]], [[2, 3, 4], [5, 6, 7]]])
    assert x.shape == (2, 2, 3)
    assert x.type == Type.WINDOWS
コード例 #17
0
def test_create_collection_windows_variable_length():
    x = Collection.from_array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[2, 3, 4], [5, 6, 7]]])
    assert x.shape == (2, (3, 2), 3)
    assert x.type == Type.WINDOWS
コード例 #18
0
def test_has_duplicate_min_false():
    x = Collection.from_array([2, 3, 4, 4])
    actual = HasDuplicateMin().transform(x).values
    np.testing.assert_equal(actual, False)
コード例 #19
0
def test_has_duplicate_empty():
    x = Collection.from_array([np.nan])
    actual = HasDuplicate().transform(x).values
    np.testing.assert_equal(actual, False)
コード例 #20
0
def test_has_duplicate_true():
    x = Collection.from_array([1, 2, 3, 3])
    actual = HasDuplicate().transform(x).values
    np.testing.assert_equal(actual, True)
コード例 #21
0
def test_value_count():
    x = Collection.from_array([1, 1, 2, 3])
    actual = ValueCount(value=1).transform(x).values
    np.testing.assert_equal(actual, 2)
コード例 #22
0
def test_number_of_unique_values_1_rel():
    x = Collection.from_array([2, 2, 2, 2])
    actual = NumberUniqueValues(rel=True).transform(x).values
    np.testing.assert_equal(actual, 0.25)
コード例 #23
0
def test_longest_strike_above_mean_zero():
    x = Collection.from_array([1, 1, 1])
    actual = LongestStrikeAboveMean().transform(x).values
    np.testing.assert_equal(actual, 0)
コード例 #24
0
def test_number_of_unique_values_0_abs():
    x = Collection.from_array([np.nan])
    actual = NumberUniqueValues(rel=False).transform(x).values
    np.testing.assert_equal(actual, np.nan)
コード例 #25
0
def test_min():
    x = Collection.from_array([4, 3, 2, 1, 2, 3, 4])
    actual = Min().transform(x).values
    np.testing.assert_equal(actual, 1)
コード例 #26
0
def test_sum_of_reoccurring_data_points_0():
    x = Collection.from_array([1, 2, 3, 4])
    actual = SumReoccurringDataPoints().transform(x).values
    np.testing.assert_equal(actual, 0)
コード例 #27
0
def test_angle_perpendicular():
    p1 = Collection.from_array([1, 0])
    p2 = Collection.from_array([0, 0])
    p3 = Collection.from_array([0, 2])
    actual = Angle().transform(p1, p2, p3, ignore_preconditions=True).values
    np.testing.assert_almost_equal(np.mod(actual, np.pi), np.pi / 2)
コード例 #28
0
def test_sum_of_reoccurring_values():
    x = Collection.from_array([1, 1, 2, 3, 3, 4])
    actual = SumReoccurringValues().transform(x).values
    np.testing.assert_equal(actual, 4)
コード例 #29
0
def test_number_of_peaks_support_2_zero():
    x = Collection.from_array([3, 2, 1, 0])
    actual = NumberPeaks(support=2).transform(x).values
    np.testing.assert_equal(actual, 0)
コード例 #30
0
def test_create_collection_attributes():
    x = Collection.from_array([1, 2, 3])
    assert x.shape == (1, 1, 3)
    assert x.type == Type.ATTRIBUTES