def run_tsm_unittests(X,y,column_headers,verbose=True,logfile=None): tsm = TriggeredSeriesModel(column_headers, logfile=logfile, verbose=verbose, on_disk=False, debug=True) # ptf('Try set-up', logfile) # tsm.setup(X,y) # print X.head() # print X.iloc[0][0:15,0:4] # print X.iloc[0].shape # tsm._check_trial_integrity() # # print 'Preprocess' # Xpp = tsm.preprocess(X) # # print Xpp.iloc[0][0:15,0:4] # print Xpp.iloc[0].shape # print 'Prune' # Xp = tsm.prune_spots(Xpp, ['26B', '11R', '45B', '36B', '30R', '11B'], column_headers) # # print Xp.iloc[0][0:15] # print Xp.iloc[0].shape # print tsm.trigger_indexes, tsm.trigger_spots # # print 'Featurize' # Xtrig = tsm.featurize_triggers(Xp,30) # print Xtrig.shape # print tsm.trigger_feature_times # print tsm.trigger_features # print tsm.trigger_featurizers # print 'Now try doing all of these steps with fit' # tsm = TriggeredSeriesModel(column_headers, logfile=logfile, verbose=verbose, # on_disk=False, debug=True, detection_featurizer_arguments = {'order':2, 'dx':20.0, 'maxmin':True}, # detection_reducer_arguments={'n_components':3}) # Xf = tsm.fit(X,y, verbose=verbose, debug=True) print 'Now with a stacked yp and ypp classifier' tsm = TriggeredSeriesModel(column_headers, logfile=logfile, verbose=verbose, on_disk=False, debug=True, color_vector_type='DI', detection_featurizer_arguments = {'order':2, 'dx':20.0, 'maxmin':True, 'gauss':True, 'stacked':True, 'sigma':1}, detection_reducer_arguments={'n_components':3}, resample_method='over') Xf = tsm.fit(X,y, verbose=verbose, debug=True) return tsm
end = time.time() ptf( 'Data unpickled in %d seconds (%d total trials)' % ((end-start), len(X)), LOGFILE) run_params['logfile'] = LOGFILE run_params['runid'] = RUNID # create model if RUNTYPE == 'trigger': sm = TriggeredSeriesModel(used_column_headers.values, **run_params) elif RUNTYPE == 'series': sm = SeriesModel(**run_params) # Altogether now print ('** DOING THE FIT **') sm.fit(X, y, verbose=verbose, debug=debug) bigend = time.time() ptf('====> %d seconds (%0.1f mins)' % ((bigend-bigstart), (bigend-bigstart)/60.0), LOGFILE) print_job_info(run_params, n_jobs, n_cpus, RUNID, START_DT_STR, LOGFILE=LOGFILE, debug=debug, profile=PROFILE, verbose=verbose, start=False) print_run_details(X, sm, LOGFILE) save_model(sm, RUNID, MODELFILENAME, LOGFILE=LOGFILE) ## VIEW RESULTS if RUNTYPE == 'trigger': make_trigger_plots(sm, y, RUNID, debug=debug) elif RUNTYPE == 'series':