コード例 #1
0
ファイル: masterplot.py プロジェクト: rtevans/tacc_stats_old
def plot_lines(ax, ts, index, xscale=1.0, yscale=1.0, xlabel='', ylabel=''):
  tmid=(ts.t[:-1]+ts.t[1:])/2.0
  ax.hold=True
  for k in ts.j.hosts.keys():
    v=assemble(ts.data,index,k,0)
    rate=numpy.divide(numpy.diff(v),numpy.diff(ts.t))
    ax.plot(tmid/xscale,rate/yscale)
  tspl_utils.adjust_yaxis_range(ax,0.1)
  ax.yaxis.set_major_locator( matplotlib.ticker.MaxNLocator(nbins=6))
  setlabels(ax,ts,index,xlabel,ylabel,yscale)
コード例 #2
0
def plot_mmm(ax,
             ts,
             index,
             xscale=1.0,
             yscale=1.0,
             xlabel='',
             ylabel='',
             do_rate=False):
    tmid = (ts.t[:-1] + ts.t[1:]) / 2.0
    d = []
    for k in ts.j.hosts.keys():
        v = ts.assemble(index, k, 0)
        if do_rate:
            d.append(numpy.divide(numpy.diff(v), numpy.diff(ts.t)))
        else:
            d.append((v[:-1] + v[1:]) / 2.0)

    a = numpy.array(d)

    mn = []
    p25 = []
    p50 = []
    p75 = []
    mx = []
    for i in range(len(ts.t) - 1):
        mn.append(min(a[:, i]))
        p25.append(scipy.stats.scoreatpercentile(a[:, i], 25))
        p50.append(scipy.stats.scoreatpercentile(a[:, i], 50))
        p75.append(scipy.stats.scoreatpercentile(a[:, i], 75))
        mx.append(max(a[:, i]))

    mn = numpy.array(mn)
    p25 = numpy.array(p25)
    p50 = numpy.array(p50)
    p75 = numpy.array(p75)
    mx = numpy.array(mx)

    ax.hold = True
    ax.plot(tmid / xscale, mn / yscale, '--')
    ax.plot(tmid / xscale, p25 / yscale)
    ax.plot(tmid / xscale, p50 / yscale)
    ax.plot(tmid / xscale, p75 / yscale)
    ax.plot(tmid / xscale, mx / yscale, '--')

    setlabels(ax, ts, index, xlabel, ylabel, yscale)
    ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=4))
    tspl_utils.adjust_yaxis_range(ax, 0.1)
コード例 #3
0
def plot_mmm(ax, ts, index, xscale=1.0, yscale=1.0, xlabel='', ylabel='',
             do_rate=False):
  tmid=(ts.t[:-1]+ts.t[1:])/2.0
  d=[]
  for k in ts.j.hosts.keys():
    v=ts.assemble(index,k,0)
    if do_rate:
      d.append(numpy.divide(numpy.diff(v),numpy.diff(ts.t)))
    else:
      d.append((v[:-1]+v[1:])/2.0)
    
  a=numpy.array(d)

  mn=[]
  p25=[]
  p50=[]
  p75=[]
  mx=[]
  for i in range(len(ts.t)-1):
    mn.append(min(a[:,i]))
    p25.append(scipy.stats.scoreatpercentile(a[:,i],25))
    p50.append(scipy.stats.scoreatpercentile(a[:,i],50))
    p75.append(scipy.stats.scoreatpercentile(a[:,i],75))
    mx.append(max(a[:,i]))

  mn=numpy.array(mn)
  p25=numpy.array(p25)
  p50=numpy.array(p50)
  p75=numpy.array(p75)
  mx=numpy.array(mx)

  ax.hold=True
  ax.plot(tmid/xscale,mn/yscale,'--')
  ax.plot(tmid/xscale,p25/yscale)
  ax.plot(tmid/xscale,p50/yscale)
  ax.plot(tmid/xscale,p75/yscale)
  ax.plot(tmid/xscale,mx/yscale,'--')

  setlabels(ax,ts,index,xlabel,ylabel,yscale)
  ax.yaxis.set_major_locator( matplotlib.ticker.MaxNLocator(nbins=4))
  tspl_utils.adjust_yaxis_range(ax,0.1)
コード例 #4
0
def plot_lines(ax,
               ts,
               index,
               xscale=1.0,
               yscale=1.0,
               xlabel='',
               ylabel='',
               do_rate=True):
    tmid = (ts.t[:-1] + ts.t[1:]) / 2.0
    ax.hold = True
    for k in ts.j.hosts.keys():
        v = ts.assemble(index, k, 0)
        if do_rate:
            rate = numpy.divide(numpy.diff(v), numpy.diff(ts.t))
            ax.plot(tmid / xscale, rate / yscale)
        else:
            val = (v[:-1] + v[1:]) / 2.0
            ax.plot(tmid / xscale, val / yscale)
    tspl_utils.adjust_yaxis_range(ax, 0.1)
    ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=6))
    setlabels(ax, ts, index, xlabel, ylabel, yscale)
コード例 #5
0
ファイル: queueplot.py プロジェクト: billbarth/tacc_stats-old
def main():
    parser = argparse.ArgumentParser(
        description='Deal with a directory of pickle'
        ' files nightly')
    parser.add_argument('-p',
                        help='Set number of processes',
                        nargs=1,
                        type=int,
                        default=[1])
    parser.add_argument('-o',
                        help='Output directory',
                        nargs=1,
                        type=str,
                        default=['.'],
                        metavar='output_dir')
    parser.add_argument('-q',
                        help='Queue',
                        nargs=1,
                        type=str,
                        default=['normal'],
                        metavar='queue')
    parser.add_argument('filearg',
                        help='File, directory, or quoted'
                        ' glob pattern',
                        nargs='?',
                        default='jobs')
    n = parser.parse_args()

    filelist = tspl_utils.getfilelist(n.filearg)
    target_queue = n.q[0]

    pool = multiprocessing.Pool(processes=n.p[0])
    m = multiprocessing.Manager()
    files = m.list()

    partial_getqueue = functools.partial(getqueue, queue=target_queue)
    res = pool.map(partial_getqueue, filelist)
    pool.close()
    pool.join()

    res = filter(lambda x: x != None, res)
    if len(res) == 0:
        print 'no jobs found'
        return

    res_sorted = sorted(res, key=lambda x: x[0])
    res2 = zip(*res_sorted)

    t = res2[0]
    min_dram_rate = res2[1]
    max_dram_rate = res2[2]
    mean_dram_rate = res2[3]
    min_l1_rate = res2[4]
    max_l1_rate = res2[5]
    mean_l1_rate = res2[6]
    min_lnet_rate = res2[7]
    max_lnet_rate = res2[8]
    mean_lnet_rate = res2[9]
    min_ib_rate = res2[10]
    max_ib_rate = res2[11]
    mean_ib_rate = res2[12]
    min_user_rate = res2[13]
    max_user_rate = res2[14]
    mean_user_rate = res2[15]
    min_flops_rate = res2[16]
    max_flops_rate = res2[17]
    mean_flops_rate = res2[18]
    min_mem_usage = res2[19]
    max_mem_usage = res2[20]
    mean_mem_usage = res2[21]
    ids = res2[22]

    start_date = datetime.datetime.fromtimestamp(
        t[0]).strftime('%Y-%m-%d %H:%M:%S')
    end_date = datetime.datetime.fromtimestamp(
        t[-1]).strftime('%Y-%m-%d %H:%M:%S')

    fig, ax = plt.subplots(6, 1, figsize=(8, 12), dpi=80)
    plt.subplots_adjust(hspace=0.35)

    ax[0].plot(t, min_flops_rate, 'x', t, mean_flops_rate, '+', t,
               max_flops_rate, '*')
    ax[0].set_ylabel('GFlops/s')
    ax[0].set_xticklabels(labels=[])

    ax[1].plot(t, min_dram_rate, 'x', t, mean_dram_rate, '+', t, max_dram_rate,
               '*')
    ax[1].set_ylabel('DRAM BW MB/s')
    ax[1].set_xticklabels(labels=[])

    ax[2].plot(t, min_mem_usage, 'x', t, mean_mem_usage, '+', t, max_mem_usage,
               '*')
    ax[2].set_ylabel('DRAM Usage GB')
    ax[2].set_xticklabels(labels=[])

    ax[3].plot(t, min_lnet_rate, 'x', t, mean_lnet_rate, '+', t, max_lnet_rate,
               '*')
    ax[3].set_ylabel('Lnet Rate MB/s')
    ax[3].set_xticklabels(labels=[])

    ax[4].plot(t, min_ib_rate, 'x', t, mean_ib_rate, '+', t, max_ib_rate, '*')
    ax[4].set_ylabel('IB - Lnet Rate MB/s')
    ax[4].set_xticklabels(labels=[])

    ax[5].plot(t, min_user_rate, 'x', t, mean_user_rate, '+', t, max_user_rate,
               '*')
    ax[5].set_ylabel('CPU User Fraction')
    ax[5].set_xticklabels(labels=[])

    for i in range(6):
        tspl_utils.adjust_yaxis_range(ax[i], 0.1)

    ax[5].set_xlabel('t')

    plt.suptitle(target_queue + ' ' + start_date + ' -- ' + end_date)
    fname = target_queue
    fig.savefig(fname)
    plt.close()

    print 'Found', len(res_sorted), 'jobs for', target_queue, ids
コード例 #6
0
def master_plot(file, threshold=False):
    k1 = [
        'amd64_core', 'amd64_core', 'amd64_sock', 'lnet', 'lnet', 'ib_sw',
        'ib_sw', 'cpu'
    ]
    k2 = [
        'SSE_FLOPS', 'DCSF', 'DRAM', 'rx_bytes', 'tx_bytes', 'rx_bytes',
        'tx_bytes', 'user'
    ]

    try:
        print file
        ts = tspl.TSPLSum(file, k1, k2)
    except tspl.TSPLException as e:
        return

    if not tspl_utils.checkjob(ts, 3600, 16):
        return
    elif ts.numhosts < 2:
        print ts.j.id + ': 1 host'
        return

    tmid = (ts.t[:-1] + ts.t[1:]) / 2.0

    fig, ax = plt.subplots(6, 1, figsize=(8, 12), dpi=80)

    # Plot flop rate
    ax[0].hold = True
    for k in ts.j.hosts.keys():
        h = ts.j.hosts[k]
        rate = numpy.divide(numpy.diff(ts.data[0][k][0]), numpy.diff(ts.t))
        ax[0].plot(tmid / 3600, rate)
    ax[0].set_ylabel('Total ' + ts.k1[0] + '\n' + ts.k2[0] + '/s')

    # Plot DCSF rate
    ax[1].hold = True
    for k in ts.j.hosts.keys():
        h = ts.j.hosts[k]
        rate = numpy.divide(numpy.diff(ts.data[1][k][0]), numpy.diff(ts.t))
        ax[1].plot(tmid / 3600, rate)
    ax[1].set_ylabel('Total ' + ts.k1[1] + '\n' + ts.k2[1] + '/s')

    #Plot DRAM rate
    ax[2].hold = True
    for k in ts.j.hosts.keys():
        h = ts.j.hosts[k]
        rate = numpy.divide(numpy.diff(ts.data[2][k][0]), numpy.diff(ts.t))
        ax[2].plot(tmid / 3600, rate)
    ax[2].set_ylabel('Total ' + ts.k1[2] + '\n' + ts.k2[2] + '/s')

    # Plot lnet sum rate
    ax[3].hold = True
    for k in ts.j.hosts.keys():
        h = ts.j.hosts[k]
        rate = numpy.divide(numpy.diff(ts.data[3][k][0] + ts.data[4][k][0]),
                            numpy.diff(ts.t))
        ax[3].plot(tmid / 3600, rate / (1024. * 1024.))
    ax[3].set_ylabel('Total lnet MB/s')

    # Plot remaining IB sum rate
    ax[4].hold = True
    for k in ts.j.hosts.keys():
        h = ts.j.hosts[k]
        v = ts.data[5][k][0] + ts.data[6][k][0] - (ts.data[3][k][0] +
                                                   ts.data[4][k][0])
        rate = numpy.divide(numpy.diff(v), numpy.diff(ts.t))
        ax[4].plot(tmid / 3600, rate / (1024 * 1024.))
    ax[4].set_ylabel('Total (ib_sw-lnet) MB/s')

    #Plot CPU user time
    ax[5].hold = True
    for k in ts.j.hosts.keys():
        h = ts.j.hosts[k]
        rate = numpy.divide(numpy.diff(ts.data[7][k][0] / 100 / ts.wayness),
                            numpy.diff(ts.t))
        ax[5].plot(tmid / 3600, rate)
    ax[5].set_ylabel('Total ' + ts.k1[7] + '\n' + ts.k2[7] + '/s')
    ax[5].set_xlabel('Time (hr)')

    print ts.j.id + ': '

    title = ts.title
    if threshold:
        title += ', V: %(v)-8.3f' % {'v': threshold}

    plt.suptitle(title)
    plt.subplots_adjust(hspace=0.35)
    for a in ax:
        tspl_utils.adjust_yaxis_range(a, 0.1)

    fname = '_'.join(['graph', ts.j.id, 'master'])
    fig.savefig(fname)
    plt.close()
コード例 #7
0
ファイル: masterplot.py プロジェクト: gc3-uzh-ch/tacc_stats
def master_plot(file,threshold=False):
  k1=['amd64_core','amd64_core','amd64_sock','lnet','lnet','ib_sw','ib_sw',
      'cpu']
  k2=['SSE_FLOPS','DCSF','DRAM','rx_bytes','tx_bytes','rx_bytes','tx_bytes',
      'user']

  try:
    print file
    ts=tspl.TSPLSum(file,k1,k2)
  except tspl.TSPLException as e:
    return

  if not tspl_utils.checkjob(ts,3600,16):
    return
  elif ts.numhosts < 2:
    print ts.j.id + ': 1 host'
    return

  tmid=(ts.t[:-1]+ts.t[1:])/2.0
  

  fig,ax=plt.subplots(6,1,figsize=(8,12),dpi=80)
  
  # Plot flop rate
  ax[0].hold=True 
  for k in ts.j.hosts.keys():
    h=ts.j.hosts[k]
    rate=numpy.divide(numpy.diff(ts.data[0][k][0]),numpy.diff(ts.t))
    ax[0].plot(tmid/3600,rate)
  ax[0].set_ylabel('Total ' + ts.k1[0] + '\n' + ts.k2[0] + '/s')

  # Plot DCSF rate
  ax[1].hold=True
  for k in ts.j.hosts.keys():
    h=ts.j.hosts[k]
    rate=numpy.divide(numpy.diff(ts.data[1][k][0]),numpy.diff(ts.t))
    ax[1].plot(tmid/3600,rate)
  ax[1].set_ylabel('Total ' + ts.k1[1] + '\n' + ts.k2[1] + '/s')

  #Plot DRAM rate
  ax[2].hold=True
  for k in ts.j.hosts.keys():
    h=ts.j.hosts[k]
    rate=numpy.divide(numpy.diff(ts.data[2][k][0]),numpy.diff(ts.t))
    ax[2].plot(tmid/3600,rate)
  ax[2].set_ylabel('Total ' + ts.k1[2] + '\n' + ts.k2[2] + '/s')

  # Plot lnet sum rate
  ax[3].hold=True
  for k in ts.j.hosts.keys():
    h=ts.j.hosts[k]
    rate=numpy.divide(numpy.diff(ts.data[3][k][0]+ts.data[4][k][0]),
                      numpy.diff(ts.t))
    ax[3].plot(tmid/3600,rate/(1024.*1024.))
  ax[3].set_ylabel('Total lnet MB/s')

  # Plot remaining IB sum rate
  ax[4].hold=True
  for k in ts.j.hosts.keys():
    h=ts.j.hosts[k]
    v=ts.data[5][k][0]+ts.data[6][k][0]-(ts.data[3][k][0]+ts.data[4][k][0])
    rate=numpy.divide(numpy.diff(v),numpy.diff(ts.t))
    ax[4].plot(tmid/3600,rate/(1024*1024.))
  ax[4].set_ylabel('Total (ib_sw-lnet) MB/s')

  #Plot CPU user time
  ax[5].hold=True
  for k in ts.j.hosts.keys():
    h=ts.j.hosts[k]
    rate=numpy.divide(numpy.diff(ts.data[7][k][0]/100/ts.wayness),
                      numpy.diff(ts.t))
    ax[5].plot(tmid/3600,rate)
  ax[5].set_ylabel('Total ' + ts.k1[7] + '\n' + ts.k2[7] + '/s')
  ax[5].set_xlabel('Time (hr)')
  
  print ts.j.id + ': '

  title=ts.title
  if threshold:
    title+=', V: %(v)-8.3f' % {'v': threshold}

  plt.suptitle(title)
  plt.subplots_adjust(hspace=0.35)
  for a in ax:
    tspl_utils.adjust_yaxis_range(a,0.1)

  fname='_'.join(['graph',ts.j.id,'master'])
  fig.savefig(fname)
  plt.close()
コード例 #8
0
def main():

    parser = argparse.ArgumentParser(description='Look for high meta data rate'\
                                     ' to Lustre')
    parser.add_argument('-t',
                        metavar='thresh',
                        help='Treshold metadata rate',
                        nargs=1,
                        default=[100000.])
    parser.add_argument('filearg',
                        help='File, directory, or quoted'
                        ' glob pattern',
                        nargs='?',
                        default='jobs')

    n = parser.parse_args()
    thresh = float(n.t[0])
    print thresh

    filelist = tspl_utils.getfilelist(n.filearg)

    #  k1=['llite', 'llite', 'llite', 'llite', 'llite',
    #      'llite', 'llite', 'llite', 'llite', 'llite',
    #      'llite', 'llite', 'llite', 'llite', 'llite',
    #      'llite', 'llite', 'llite', 'llite', 'llite',
    #      'llite', 'llite', 'llite', 'llite', 'llite',
    #      'llite']
    #  k2=['open','close','mmap','seek','fsync','setattr',
    #      'truncate','flock','getattr','statfs','alloc_inode',
    #      'setxattr','getxattr',' listxattr',
    #      'removexattr', 'inode_permission', 'readdir',
    #      'create','lookup','link','unlink','symlink','mkdir',
    #      'rmdir','mknod','rename',]
    k1 = [
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
        'llite',
    ]
    k2 = [
        'open',
        'close',
        'mmap',
        'fsync',
        'setattr',
        'truncate',
        'flock',
        'getattr',
        'statfs',
        'alloc_inode',
        'setxattr',
        ' listxattr',
        'removexattr',
        'readdir',
        'create',
        'lookup',
        'link',
        'unlink',
        'symlink',
        'mkdir',
        'rmdir',
        'mknod',
        'rename',
    ]

    for file in filelist:
        try:
            ts = tspl.TSPLSum(file, k1, k2)

        except tspl.TSPLException as e:
            continue

        if not tspl_utils.checkjob(ts, 3600., range(1, 33)):
            continue

        tmid = (ts.t[:-1] + ts.t[1:]) / 2.0

        ld = lariat_utils.LariatData(ts.j.id, ts.j.end_time, 'lariatData')

        meta_rate = numpy.zeros_like(tmid)

        for k in ts.j.hosts.keys():
            meta_rate += numpy.diff(ts.assemble(range(0, len(k1)), k,
                                                0)) / numpy.diff(ts.t)

        meta_rate /= float(ts.numhosts)

        if numpy.max(meta_rate) > thresh:
            title = ts.title
            if ld.exc != 'unknown':
                title += ', E: ' + ld.exc.split('/')[-1]

            fig, ax = plt.subplots(1, 1, figsize=(10, 8), dpi=80)
            plt.subplots_adjust(hspace=0.35)
            plt.suptitle(title)

            markers = ('o', 'x', '+', '^', 's', '8', 'p', 'h', '*', 'D', '<',
                       '>', 'v', 'd', '.')

            colors = ('b', 'g', 'r', 'c', 'm', 'k', 'y')

            cnt = 0
            for v in ts.data:
                for host in v:
                    for vals in v[host]:
                        rate = numpy.diff(vals) / numpy.diff(ts.t)
                        c = colors[cnt % len(colors)]
                        m = markers[cnt % len(markers)]
                        #            print cnt,(cnt % len(colors)), (cnt % len(markers)), k2[cnt], c, m

                        ax.plot(tmid / 3600.,
                                rate,
                                marker=m,
                                markeredgecolor=c,
                                linestyle='-',
                                color=c,
                                markerfacecolor='None',
                                label=k2[cnt])
                        ax.hold = True
                cnt = cnt + 1

            ax.set_ylabel('Meta Data Rate (op/s)')
            tspl_utils.adjust_yaxis_range(ax, 0.1)

            handles, labels = ax.get_legend_handles_labels()
            new_handles = {}
            for h, l in zip(handles, labels):
                new_handles[l] = h

            box = ax.get_position()
            ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])
            ax.legend(new_handles.values(),
                      new_handles.keys(),
                      prop={'size': 8},
                      bbox_to_anchor=(1.05, 1),
                      borderaxespad=0.,
                      loc=2)

            fname = '_'.join(['metadata', ts.j.id, ts.owner])

            fig.savefig(fname)
            plt.close()
コード例 #9
0
ファイル: userplot.py プロジェクト: billbarth/tacc_stats-old
def main():
  parser=argparse.ArgumentParser(description='Deal with a directory of pickle'
                                 ' files nightly')
  parser.add_argument('-p', help='Set number of processes',
                      nargs=1, type=int, default=[1])
  parser.add_argument('-o', help='Output directory',
                      nargs=1, type=str, default=['.'], metavar='output_dir')
  parser.add_argument('-u', help='User',
                      nargs=1, type=str, default=['bbarth'], metavar='username')
  parser.add_argument('filearg', help='File, directory, or quoted'
                      ' glob pattern', nargs='?',default='jobs')
  n=parser.parse_args()

  filelist=tspl_utils.getfilelist(n.filearg)
  target_user=n.u[0]

  pool   = multiprocessing.Pool(processes=n.p[0])
  m      = multiprocessing.Manager()
  files  = m.list()


  partial_getuser=functools.partial(getuser,user=target_user)
  res = pool.map(partial_getuser,filelist)
  pool.close()
  pool.join()

  res  = filter(lambda x: x != None, res)
  if len(res) == 0:
    print 'no jobs found'
    return

  res_sorted = sorted(res, key=lambda x:x[0])
  res2 = zip(*res_sorted)


  t=res2[0]
  min_dram_rate=res2[1]
  max_dram_rate=res2[2]
  mean_dram_rate=res2[3]
  min_l1_rate=res2[4]
  max_l1_rate=res2[5]
  mean_l1_rate=res2[6]
  min_lnet_rate=res2[7]
  max_lnet_rate=res2[8]
  mean_lnet_rate=res2[9]
  min_ib_rate=res2[10]
  max_ib_rate=res2[11]
  mean_ib_rate=res2[12]
  min_user_rate=res2[13]
  max_user_rate=res2[14]
  mean_user_rate=res2[15]
  min_flops_rate=res2[16]
  max_flops_rate=res2[17]
  mean_flops_rate=res2[18]
  min_mem_usage=res2[19]
  max_mem_usage=res2[20]
  mean_mem_usage=res2[21]
  ids=res2[22]

  start_date = datetime.datetime.fromtimestamp(t[0]).strftime('%Y-%m-%d %H:%M:%S')
  end_date   = datetime.datetime.fromtimestamp(t[-1]).strftime('%Y-%m-%d %H:%M:%S')

  fig,ax=plt.subplots(6,1,figsize=(8,12),dpi=80)
  plt.subplots_adjust(hspace=0.35)

  ax[0].plot(t,min_flops_rate,'x',t,mean_flops_rate,'+',t,max_flops_rate,'*')
  ax[0].set_ylabel('GFlops/s')
  ax[0].set_xticklabels(labels=[])
  
  ax[1].plot(t,min_dram_rate,'x',t,mean_dram_rate,'+',t,max_dram_rate,'*')
  ax[1].set_ylabel('DRAM BW MB/s')
  ax[1].set_xticklabels(labels=[])
  
  ax[2].plot(t,min_mem_usage,'x',t,mean_mem_usage,'+',t,max_mem_usage,'*')
  ax[2].set_ylabel('DRAM Usage GB')
  ax[2].set_xticklabels(labels=[])
  
  ax[3].plot(t,min_lnet_rate,'x',t,mean_lnet_rate,'+',t,max_lnet_rate,'*')
  ax[3].set_ylabel('Lnet Rate MB/s')
  ax[3].set_xticklabels(labels=[])
  
  ax[4].plot(t,min_ib_rate,'x',t,mean_ib_rate,'+',t,max_ib_rate,'*')
  ax[4].set_ylabel('IB - Lnet Rate MB/s')
  ax[4].set_xticklabels(labels=[])
  
  ax[5].plot(t,min_user_rate,'x',t,mean_user_rate,'+',t,max_user_rate,'*')
  ax[5].set_ylabel('CPU User Fraction')
  ax[5].set_xticklabels(labels=[])

  for i in range(6):
    tspl_utils.adjust_yaxis_range(ax[i],0.1)

  ax[5].set_xlabel('t')

  plt.suptitle(target_user+' '+start_date+' -- '+end_date)
  fname=target_user
  fig.savefig(fname)
  plt.close()

  print 'Found', len(res_sorted), 'jobs for', target_user, ids
コード例 #10
0
ファイル: plot.py プロジェクト: billbarth/tacc_stats-old
def main():

    parser = argparse.ArgumentParser(description="Look for imbalance between" "hosts for a pair of keys")
    parser.add_argument("filearg", help="File, directory, or quoted" " glob pattern", nargs="?", default="jobs")

    n = parser.parse_args()

    filelist = tspl_utils.getfilelist(n.filearg)

    for file in filelist:

        res = get_data(file)
        if res is None:
            continue

        (
            ts,
            ld,
            tmid,
            read_rate,
            write_rate,
            stall_rate,
            clock_rate,
            avx_rate,
            sse_rate,
            meta_rate,
            l1_rate,
            l2_rate,
            l3_rate,
            load_rate,
            read_frac,
            stall_frac,
        ) = res

        title = ts.title
        if ld.exc != "unknown":
            title += ", E: " + ld.exc.split("/")[-1]

        fig, ax = plt.subplots(5, 1, figsize=(8, 8), dpi=80)
        plt.subplots_adjust(hspace=0.35)

        plt.suptitle(title)
        ax[0].plot(tmid / 3600.0, read_frac)
        ax[0].set_ylabel("DRAM Read Fraction")
        #    ax[0].set_ylim(getlimits(read_frac))
        tspl_utils.adjust_yaxis_range(ax[0], 0.1)

        #    ax[1].plot(tmid/3600., stall_frac)
        #    ax[1].set_ylabel('Stall Fraction')
        #    tspl_utils.adjust_yaxis_range(ax[1],0.1)

        ax[1].plot(tmid / 3600.0, avx_rate / 1e9)
        ax[1].hold = True
        ax[1].plot(tmid / 3600.0, sse_rate / 1e9, "r")
        ax[1].set_ylabel("AVX Rate")
        tspl_utils.adjust_yaxis_range(ax[1], 0.1)

        ax[2].plot(tmid / 3600.0, clock_rate)
        ax[2].set_ylabel("Observed Clock Rate")
        tspl_utils.adjust_yaxis_range(ax[2], 0.1)

        ax[3].plot(tmid / 3600.0, meta_rate)
        ax[3].set_ylabel("Meta Data Rate")
        tspl_utils.adjust_yaxis_range(ax[3], 0.1)

        ax[4].plot(tmid / 3600.0, load_rate - (l1_rate + l2_rate + l3_rate))
        ax[4].set_ylabel("Cache Miss Rate?")
        tspl_utils.adjust_yaxis_range(ax[3], 0.1)

        fname = "_".join(["plot", ts.j.id, ts.owner])

        fig.savefig(fname)
        plt.close()
コード例 #11
0
def main():

  parser = argparse.ArgumentParser(description='Look for high meta data rate'\
                                   ' to Lustre')
  parser.add_argument('-t', metavar='thresh',
                      help='Treshold metadata rate',
                      nargs=1, default=[100000.])
  parser.add_argument('filearg', help='File, directory, or quoted'
                      ' glob pattern', nargs='?',default='jobs')

  n=parser.parse_args()
  thresh=float(n.t[0])
  print thresh


  filelist=tspl_utils.getfilelist(n.filearg)

#  k1=['llite', 'llite', 'llite', 'llite', 'llite',
#      'llite', 'llite', 'llite', 'llite', 'llite',
#      'llite', 'llite', 'llite', 'llite', 'llite',
#      'llite', 'llite', 'llite', 'llite', 'llite',
#      'llite', 'llite', 'llite', 'llite', 'llite',
#      'llite']
#  k2=['open','close','mmap','seek','fsync','setattr',
#      'truncate','flock','getattr','statfs','alloc_inode',
#      'setxattr','getxattr',' listxattr',
#      'removexattr', 'inode_permission', 'readdir',
#      'create','lookup','link','unlink','symlink','mkdir',
#      'rmdir','mknod','rename',]
  k1=['llite', 'llite', 'llite', 'llite', 'llite',
      'llite', 'llite', 'llite', 'llite', 'llite',
      'llite', 'llite', 'llite', 'llite', 'llite',
      'llite', 'llite', 'llite', 'llite', 'llite',
      'llite', 'llite', 'llite', ]
  k2=['open','close','mmap','fsync','setattr',
      'truncate','flock','getattr','statfs','alloc_inode',
      'setxattr',' listxattr',
      'removexattr', 'readdir',
      'create','lookup','link','unlink','symlink','mkdir',
      'rmdir','mknod','rename',]

  for file in filelist:
    try:
      ts=tspl.TSPLSum(file,k1,k2)
            
    except tspl.TSPLException as e:
      continue

    if not tspl_utils.checkjob(ts,3600.,range(1,33)):
      continue

    tmid=(ts.t[:-1]+ts.t[1:])/2.0

    ld=lariat_utils.LariatData(ts.j.id,ts.j.end_time,'lariatData')
    
    meta_rate = numpy.zeros_like(tmid)

    for k in ts.j.hosts.keys():
      meta_rate +=numpy.diff(ts.assemble(range(0,len(k1)),k,0))/numpy.diff(ts.t)
      
    meta_rate  /= float(ts.numhosts)

    if numpy.max(meta_rate) > thresh:
      title=ts.title
      if ld.exc != 'unknown':
        title += ', E: ' + ld.exc.split('/')[-1]

      fig,ax=plt.subplots(1,1,figsize=(10,8),dpi=80)
      plt.subplots_adjust(hspace=0.35)
      plt.suptitle(title)

      markers = ('o','x','+','^','s','8','p',
                 'h','*','D','<','>','v','d','.')
          
      colors  = ('b','g','r','c','m','k','y')

      cnt=0
      for v in ts.data:
        for host in v:
          for vals in v[host]:
            rate=numpy.diff(vals)/numpy.diff(ts.t)
            c=colors[cnt % len(colors)]
            m=markers[cnt % len(markers)]
#            print cnt,(cnt % len(colors)), (cnt % len(markers)), k2[cnt], c, m
            
            ax.plot(tmid/3600., rate, marker=m,
                    markeredgecolor=c, linestyle='-', color=c,
                    markerfacecolor='None', label=k2[cnt])
            ax.hold=True
        cnt=cnt+1

      ax.set_ylabel('Meta Data Rate (op/s)')
      tspl_utils.adjust_yaxis_range(ax,0.1)

      handles,labels=ax.get_legend_handles_labels()
      new_handles={}
      for h,l in zip(handles,labels):
        new_handles[l]=h

      box = ax.get_position()
      ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])
      ax.legend(new_handles.values(),new_handles.keys(),prop={'size':8},
                bbox_to_anchor=(1.05,1), borderaxespad=0., loc=2)

      fname='_'.join(['metadata',ts.j.id,ts.owner])

      fig.savefig(fname)
      plt.close()