コード例 #1
0
def place_object(robot, obj, pose_tsr_chain, manip_idx, **kwargs):
    """
    Generates end-effector poses for placing an object.
    This function assumes the object is grasped when called
    
    @param robot The robot grasping the object
    @param bowl The grasped object
    @param pose_tsr_chain The tsr chain for sampling placement poses for the object
    @param manip_idx The index of the manipulator to perform the grasp
    """

    # Can this work without importing anything?
    manip = robot.GetManipulators()[manip_idx]

    if not manip.IsGrabbing(obj):
        raise Exception('manip %s is not grabbing %s' %
                        (manip.GetName(), obj.GetName()))

    ee_in_obj = numpy.dot(numpy.linalg.inv(obj.GetTransform()),
                          manip.GetEndEffectorTransform())
    Bw = numpy.zeros((6, 2))

    for tsr in pose_tsr_chain.TSRs:
        if tsr.manipindex != manip_idx:
            raise Exception(
                'pose_tsr_chain defined for a different manipulator.')

    grasp_tsr = TSR(Tw_e=ee_in_obj, Bw=Bw, manipindex=manip_idx)
    all_tsrs = list(pose_tsr_chain.TSRs) + [grasp_tsr]
    place_chain = TSRChain(sample_start=False,
                           sample_goal=True,
                           constrain=False,
                           TSRs=all_tsrs)

    return [place_chain]
コード例 #2
0
def CreateTSRFromPose(manip, pose):
    '''Create a TSR that, when sampled, produces one pose. This 
    simply creates a common interface for the planner
    @param manip Manipulator to use use (required for tsr)
    @param pose 4x4 transform to center TSR on
    @return tsr_chain chain with single pose TSR'''
    goal_tsr = TSR(T0_w=pose)
    tsr_chain = TSRChain(sample_goal=True, TSR=goal_tsr)
    return tsr_chain
コード例 #3
0
def transport_upright(robot,
                      obj,
                      manip_idx,
                      roll_epsilon=0.2,
                      pitch_epsilon=0.2,
                      yaw_epsilon=0.2,
                      **kwargs):
    """
    Generates a trajectory-wide constraint for transporting the object with little roll, pitch or yaw
    Assumes the object has already been grasped and is in the proper
    configuration for transport.

    @param robot The robot grasping the object
    @param obj The grasped object
    @param manip_idx The index of the manipulator to perform the grasp
    @param roll_epsilon The amount to let the object roll during transport (object frame)
    @param pitch_epsilon The amount to let the object pitch during transport (object frame)
    @param yaw_epsilon The amount to let the object yaw during transport (object frame)
    """
    if roll_epsilon < 0.0:
        raise Exception('roll_espilon must be >= 0')

    if pitch_epsilon < 0.0:
        raise Exception('pitch_epsilon must be >= 0')

    if yaw_epsilon < 0.0:
        raise Exception('yaw_epsilon must be >= 0')

    manip = robot.GetManipulators()[manip_idx]

    ee_in_obj = numpy.dot(numpy.linalg.inv(obj.GetTransform()),
                          manip.GetEndEffectorTransform())
    Bw = numpy.array([
        [-100., 100.],  # bounds that cover full reachability of manip
        [-100., 100.],
        [-100., 100.],
        [-roll_epsilon, roll_epsilon],
        [-pitch_epsilon, pitch_epsilon],
        [-yaw_epsilon, yaw_epsilon]
    ])
    transport_tsr = TSR(T0_w=obj.GetTransform(),
                        Tw_e=ee_in_obj,
                        Bw=Bw,
                        manipindex=manip_idx)

    transport_chain = TSRChain(sample_start=False,
                               sample_goal=False,
                               constrain=True,
                               TSR=transport_tsr)

    return [transport_chain]
コード例 #4
0
    def PlanToEndEffectorPose(self, robot, goal_pose, **kw_args):
        """
        Plan to a desired end-effector pose.
        @param robot
        @param goal desired end-effector pose
        @param psample probability of sampling a goal
        @return traj output path
        """
        manipulator_index = robot.GetActiveManipulatorIndex()
        goal_tsr = TSR(T0_w=goal_pose, manipindex=manipulator_index)
        tsr_chain = TSRChain(sample_goal=True, TSR=goal_tsr)

        kw_args.setdefault('psample', 0.1)
        kw_args.setdefault('smoothingitrs', 0)

        return self.Plan(robot, tsr_chains=[tsr_chain], **kw_args)
コード例 #5
0
ファイル: tsrlibrary.py プロジェクト: ziminds/tsr
                def func(robot, obj):

                    all_tsrs = []
                    for tsr in chain['TSRs']:
                        T0_w = obj.GetTransform()
                        Tw_e = numpy.array(tsr['Tw_e'])
                        Bw = numpy.array(tsr['Bw'])

                        yaml_tsr = TSR(T0_w=T0_w,
                                       Tw_e=Tw_e,
                                       Bw=Bw,
                                       manipindex=self.manipindex)
                        all_tsrs.append(yaml_tsr)

                    yaml_chain = TSRChain(sample_start=sample_start,
                                          sample_goal=sample_goal,
                                          constrain=constrain,
                                          TSRs=all_tsrs)

                    return [yaml_chain]
コード例 #6
0
def box_grasp(robot,
              box,
              length,
              width,
              height,
              manip_idx,
              lateral_offset=0.0,
              lateral_tolerance=0.02,
              **kwargs):
    """
    Generate a list of TSRChain objects. Sampling from any of these
    TSRChains will give an end-effector pose that achieves a grasp on a box.

    NOTE: This function makes the following assumptions:
      1. The end-effector is oriented such that the z-axis is out of the palm
          and the x-axis should be perpendicular to the object
      2. The object coordinate frame is at the bottom, center of the object

    This returns a set of 12 TSRs. There are two TSRs for each of the 
    6 faces of the box, one for each orientation of the end-effector.
    @param robot The robot performing the grasp
    @param box The box to grasp
    @param length The length of the box - along its x-axis
    @param width The width of the box - along its y-axis
    @param height The height of the box - along its z-axis
    @param manip_idx The index of the manipulator to perform the grasp
    @param lateral_offset - The offset from the edge of the box to the end-effector
    @param lateral_tolerance - The maximum distance along the edge from
      the center of the edge that the end-effector can be placed and still achieve
      a good grasp
    """
    if length <= 0.0:
        raise Exception('length must be > 0')

    if width <= 0.0:
        raise Exception('width must be > 0')

    if height <= 0.0:
        raise Exception('height must be > 0')

    if lateral_tolerance < 0.0:
        raise Exception('lateral_tolerance must be >= 0.0')

    T0_w = box.GetTransform()

    chain_list = []

    # Top face
    Tw_e_top1 = numpy.array([[0., 1., 0., 0.], [1., 0., 0., 0.],
                             [0., 0., -1., lateral_offset + height],
                             [0., 0., 0., 1.]])
    Bw_top1 = numpy.zeros((6, 2))
    Bw_top1[1, :] = [-lateral_tolerance, lateral_tolerance]
    top_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_top1, Bw=Bw_top1, manipindex=manip_idx)
    grasp_chain_top = TSRChain(sample_start=False,
                               sample_goal=True,
                               constrain=False,
                               TSR=top_tsr1)
    chain_list += [grasp_chain_top]

    # Bottom face
    Tw_e_bottom1 = numpy.array([[0., 1., 0., 0.], [-1., 0., 0., 0.],
                                [0., 0., 1., -lateral_offset],
                                [0., 0., 0., 1.]])
    Bw_bottom1 = numpy.zeros((6, 2))
    Bw_bottom1[1, :] = [-lateral_tolerance, lateral_tolerance]
    bottom_tsr1 = TSR(T0_w=T0_w,
                      Tw_e=Tw_e_bottom1,
                      Bw=Bw_bottom1,
                      manipindex=manip_idx)
    grasp_chain_bottom = TSRChain(sample_start=False,
                                  sample_goal=True,
                                  constrain=False,
                                  TSR=bottom_tsr1)
    chain_list += [grasp_chain_bottom]

    # Front - yz face
    Tw_e_front1 = numpy.array([[0., 0., -1., 0.5 * length + lateral_offset],
                               [1., 0., 0., 0.], [0., -1., 0., 0.5 * height],
                               [0., 0., 0., 1.]])
    Bw_front1 = numpy.zeros((6, 2))
    Bw_front1[1, :] = [-lateral_tolerance, lateral_tolerance]
    front_tsr1 = TSR(T0_w=T0_w,
                     Tw_e=Tw_e_front1,
                     Bw=Bw_front1,
                     manipindex=manip_idx)
    grasp_chain_front = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=front_tsr1)
    chain_list += [grasp_chain_front]

    # Back - yz face
    Tw_e_back1 = numpy.array([[0., 0., 1., -0.5 * length - lateral_offset],
                              [-1., 0., 0., 0.], [0., -1., 0., 0.5 * height],
                              [0., 0., 0., 1.]])
    Bw_back1 = numpy.zeros((6, 2))
    Bw_back1[1, :] = [-lateral_tolerance, lateral_tolerance]
    back_tsr1 = TSR(T0_w=T0_w,
                    Tw_e=Tw_e_back1,
                    Bw=Bw_back1,
                    manipindex=manip_idx)
    grasp_chain_back = TSRChain(sample_start=False,
                                sample_goal=True,
                                constrain=False,
                                TSR=back_tsr1)
    chain_list += [grasp_chain_back]

    # Side - xz face
    Tw_e_side1 = numpy.array([[-1., 0., 0., 0.],
                              [0., 0., -1., 0.5 * width + lateral_offset],
                              [0., -1., 0., 0.5 * height], [0., 0., 0., 1.]])
    Bw_side1 = numpy.zeros((6, 2))
    Bw_side1[0, :] = [-lateral_tolerance, lateral_tolerance]
    side_tsr1 = TSR(T0_w=T0_w,
                    Tw_e=Tw_e_side1,
                    Bw=Bw_side1,
                    manipindex=manip_idx)
    grasp_chain_side1 = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=side_tsr1)
    chain_list += [grasp_chain_side1]

    # Other Side - xz face
    Tw_e_side2 = numpy.array([[1., 0., 0., 0.],
                              [0., 0., 1., -0.5 * width - lateral_offset],
                              [0., -1., 0., 0.5 * height], [0., 0., 0., 1.]])
    Bw_side2 = numpy.zeros((6, 2))
    Bw_side2[0, :] = [-lateral_tolerance, lateral_tolerance]
    side_tsr2 = TSR(T0_w=T0_w,
                    Tw_e=Tw_e_side2,
                    Bw=Bw_side2,
                    manipindex=manip_idx)
    grasp_chain_side2 = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=side_tsr2)
    chain_list += [grasp_chain_side2]

    # Each chain in the list can also be rotated by 180 degrees around z
    rotated_chain_list = []
    for c in chain_list:
        rval = numpy.pi
        R = numpy.array([[numpy.cos(rval), -numpy.sin(rval), 0., 0.],
                         [numpy.sin(rval),
                          numpy.cos(rval), 0., 0.], [0., 0., 1., 0.],
                         [0., 0., 0., 1.]])
        tsr = c.TSRs[0]
        Tw_e = tsr.Tw_e
        Tw_e_new = numpy.dot(Tw_e, R)
        tsr_new = TSR(T0_w=tsr.T0_w,
                      Tw_e=Tw_e_new,
                      Bw=tsr.Bw,
                      manipindex=tsr.manipindex)
        tsr_chain_new = TSRChain(sample_start=False,
                                 sample_goal=True,
                                 constrain=False,
                                 TSR=tsr_new)
        rotated_chain_list += [tsr_chain_new]

    return chain_list + rotated_chain_list
コード例 #7
0
def cylinder_grasp(robot,
                   obj,
                   obj_radius,
                   obj_height,
                   lateral_offset=0.0,
                   vertical_tolerance=0.02,
                   yaw_range=None,
                   manip_idx=None,
                   **kwargs):
    """
    Generate a list of TSRChain objects. Sampling from any of these
    TSRChains will give an end-effector pose that achieves a grasp on a cylinder.
    
    NOTE: This function makes the following assumptions:
      1. The end-effector is oriented such that the z-axis is out of the palm
          and the x-axis should be perpendicular to the object
      2. The object coordinate frame is at the bottom, center of the object
          
    @param robot The robot performing the grasp
    @param obj The object to grasp
    @param obj_radius The radius of the object
    @param obj_height The height of the object
    @param manip_idx The index of the manipulator to perform the grasp
    @param lateral_offset The lateral offset from the edge of the object
      to the end-effector
    @param vertical_tolerance The maximum vertical distance from the vertical center
      of the object that the grasp can be performed
    @param yaw_range Allowable range of yaw around object (default: [-pi, pi])
    """
    if obj_radius <= 0.0:
        raise Exception('obj_radius must be > 0')

    if obj_height <= 0.0:
        raise Exception('obj_height must be > 0')

    if vertical_tolerance < 0.0:
        raise Exception('vertical_tolerance must be >= 0')

    if yaw_range is not None and len(yaw_range) != 2:
        raise Exception(
            'yaw_range parameter must be 2 element list specifying min and max values'
        )

    if yaw_range is not None and yaw_range[0] > yaw_range[1]:
        raise Exception(
            'The first element of the yaw_range parameter must be greater '
            'than or equal to the second (current values [%f, %f])' %
            (yaw_range[0], yaw_range[1]))

    T0_w = obj.GetTransform()
    total_offset = lateral_offset + obj_radius

    # First hand orientation
    Tw_e_1 = numpy.array([[0., 0., 1., -total_offset], [1., 0., 0., 0.],
                          [0., 1., 0., obj_height * 0.5], [0., 0., 0., 1.]])

    Bw = numpy.zeros((6, 2))
    Bw[2, :] = [-vertical_tolerance,
                vertical_tolerance]  # Allow a little vertical movement
    if yaw_range is None:
        Bw[5, :] = [-numpy.pi, numpy.pi]  # Allow any orientation
    else:
        Bw[5, :] = yaw_range

    grasp_tsr1 = TSR(T0_w=T0_w, Tw_e=Tw_e_1, Bw=Bw, manipindex=manip_idx)
    grasp_chain1 = TSRChain(sample_start=False,
                            sample_goal=True,
                            constrain=False,
                            TSR=grasp_tsr1)

    # Flipped hand orientation
    Tw_e_2 = numpy.array([[0., 0., 1., -total_offset], [-1., 0., 0., 0.],
                          [0., -1., 0., obj_height * 0.5], [0., 0., 0., 1.]])

    grasp_tsr2 = TSR(T0_w=T0_w, Tw_e=Tw_e_2, Bw=Bw, manipindex=manip_idx)
    grasp_chain2 = TSRChain(sample_start=False,
                            sample_goal=True,
                            constrain=False,
                            TSR=grasp_tsr2)

    return [grasp_chain1, grasp_chain2]
コード例 #8
0
def _deserialize_internal(env, data, data_type):
    from numpy import array, ndarray
    from openravepy import (Environment, KinBody, Robot, Trajectory,
                            RaveCreateTrajectory)
    from prpy.tsr import TSR, TSRChain
    from .exceptions import UnsupportedTypeDeserializationException

    if data_type == dict.__name__:
        return {
            deserialize(env, k): deserialize(env, v)
            for k, v in data.iteritems()
            if k != TYPE_KEY
        }
    elif data_type == ndarray.__name__:
        return array(data['data'])
    elif data_type in [ KinBody.__name__, Robot.__name__ ]:
        body = env.GetKinBody(data['name'])
        if body is None:
            raise ValueError('There is no body with name "{:s}".'.format(
                data['name']))

        return body
    elif data_type == KinBody.Link.__name__:
        body = env.GetKinBody(data['parent_name'])
        if body is None:
            raise ValueError('There is no body with name "{:s}".'.format(
                data['parent_name']))

        link = body.GetLink(data['name'])
        if link is None:
            raise ValueError('Body "{:s}" has no link named "{:s}".'.format(
                data['parent_name'], data['name']))

        return link
    elif data_type == KinBody.Joint.__name__:
        body = env.GetKinBody(data['parent_name'])
        if body is None:
            raise ValueError('There is no body with name "{:s}".'.format(
                data['parent_name']))

        joint = body.GetJoint(data['name'])
        if joint is None:
            raise ValueError('Body "{:s}" has no joint named "{:s}".'.format(
                data['parent_name'], data['name']))

        return joint
    elif data_type == Robot.Manipulator.__name__:
        body = env.GetKinBody(data['parent_name'])
        if body is None:
            raise ValueError('There is no robot with name "{:s}".'.format(
                data['parent_name']))
        elif not body.IsRobot():
            raise ValueError('Body "{:s}" is not a robot.'.format(
                data['parent_name']))

        manip = body.GetJoint(data['name'])
        if manip is None:
            raise ValueError('Robot "{:s}" has no manipulator named "{:s}".'.format(
                data['parent_name'], data['name']))

        return manip
    elif data_type == Trajectory.__name__:
        traj = RaveCreateTrajectory(env, '')
        traj.deserialize(data['data'])
        return traj
    elif data_type == TSR.__name__:
        return TSR.from_dict(data['data'])
    elif data_type == TSRChain.__name__:
        return TSRChain.from_dict(data['data'])
    else:
        raise UnsupportedTypeDeserializationException(data_type)