#Henon-Heiles correction V = None for s in xrange(f-1): V = V + (xx[s]*xx[s]*xx[s+1] - (1.0/3)*xx[s+1]*xx[s+1]*xx[s+1]) V = V.round(eps) B = 4 A = 0.5*lp2 + tt.diag(0.5*harm + lm*V) A0 = 0.5*lp2 + tt.diag(0.5*harm) A = A.round(eps) n = A.n d = A.tt.d r = [2]*(d+1) r[0] = 1 r[d] = B x0 = tt.rand(n,d,r) t1 = time.time() print 'Matrices are done' y,lam = eigb(A,x0,1e-6) #y,lam = eigb(A0,y,1e-6) #y,lam = eigb(A,y,1e-6,nswp=1) #y,lam = eigb(A,y,1e-5) #y,lam = eigb(A,y,1e-6) t2 = time.time() print 'Eigenvalues:',lam print 'Elapsed time:', t2-t1
import sys sys.path.append('../') import numpy as np import tt from tt.eigb import * import time """ This code computes many eigenvalus of the Laplacian operator """ d = 8 f = 8 A = tt.qlaplace_dd([d]*f) #A = (-1)*A #A = tt.eye(2,d) n = [2] *(d * f) r = [8] *(d * f + 1) r[0] = 1 r[d * f] = 8 #Number of eigenvalues sought x = tt.rand(n, d * f, r) #x = tt_ones(2,d) t = time.time() y, lam = eigb(A, x, 1e-6) t1 = time.time() print 'Eigenvalues:', lam print 'Time is:', t1-t
#%% from __future__ import print_function, absolute_import, division import sys sys.path.append('../') import numpy as np import tt from tt.eigb import * import time """ This code computes many eigenvalus of the Laplacian operator """ d = 8 f = 8 A = tt.qlaplace_dd([d] * f) #A = (-1)*A #A = tt.eye(2,d) n = [2] * (d * f) r = [8] * (d * f + 1) r[0] = 1 r[d * f] = 8 #Number of eigenvalues sought x = tt.rand(n, d * f, r) #x = tt_ones(2,d) t = time.time() y, lam = eigb(A, x, 1e-6) t1 = time.time() print('Eigenvalues:', lam) print('Time is:', t1 - t) # %%