コード例 #1
0
    n_ttas
except NameError:    
    n_ttas = {
              'nhours1':{'w_events':[],'w_hours':[],
                         'w_czd':[],'w_bby':[],
                         'n_events':[],'n_hours':[],
                         'n_czd':[],'n_bby':[]},
              }    
    for p in params:
        print p    
        n_events = list()
        n_hours = list()
        r_czd = list()
        r_bby = list()
        for y in years:
            tta = tta_analysis(y)
            tta.start_df_layer(**p)
            s = pd.Series(tta.tta_dates)
            if s.size == 0:
                ev = 0  # events
                ho = 0  # hours
                cz = 0
                bb = 0
            else:
                sdiff = s-s.shift()
                ev = np.sum( sdiff>h ) + 1
                ho = tta.tta_hours
                cz = tta.tta_rainfall_czd
                bb = tta.tta_rainfall_bby
            av_time = ho/float(ev)
            print template.format(y,ev,ho,av_time,cz,bb)        
コード例 #2
0
def process(year=[],wdsurf=None,
               wdwpro=None,rainbb=None,
               raincz=None, nhours=None):
        
        
        binss={'wdir':np.arange(0,370,10),
               'wspd':np.arange(0,36,1)}
        target = ['wdir','wspd']
        arrays = {}
        for t in target:
        
            first = True        
            for y in year:
                print('Processing year {}'.format(y))
                
                ' tta analysis '
                tta = tta_analysis(y)
                tta.start_df(wdir_surf=wdsurf,
                               wdir_wprof=wdwpro,
                               rain_bby=rainbb,
                               rain_czd=raincz,
                               nhours=nhours)
        
                ' retrieve dates '
                include_dates = tta.include_dates
                tta_dates = tta.tta_dates
                notta_dates = tta.notta_dates
        
                ' read wprof '
                wprof_df = parse_data.windprof(y)
            
                wprof = wprof_df.dframe[t]        
        
                ' wprof partition '
                wprof = wprof.loc[include_dates]    # all included
                wprof_tta = wprof.loc[tta_dates]    # only tta
                wprof_notta = wprof.loc[notta_dates]# only notta
                
                s1 = np.squeeze(pandas2stack(wprof))
                s2 = np.squeeze(pandas2stack(wprof_tta))
                s3 = np.squeeze(pandas2stack(wprof_notta))
        
                if first:
                    wp = s1
                    wp_tta = s2
                    wp_notta = s3
                    first = False
                else:
                    wp = np.hstack((wp,s1))
                    wp_tta = np.hstack((wp_tta,s2))
                    wp_notta = np.hstack((wp_notta, s3))
    
            _,wp_hours = wp.shape
            _,tta_hours = wp_tta.shape
            _,notta_hours = wp_notta.shape    
            
            arrays[t]=[wp,wp_tta,wp_notta]

    
        ' makes CFAD '
        hist_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        hist_array_dir = np.empty((40,len(binss['wdir'])-1,3))
        cfad_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        cfad_array_dir = np.empty((40,len(binss['wdir'])-1,3))
        
        average_spd = np.empty((40,3))
        average_dir = np.empty((40,3))
        median_spd = np.empty((40,3))
        median_dir = np.empty((40,3))
        
        for k,v in arrays.iteritems():        
        
            hist_array = np.empty((40,len(binss[k])-1,3))
            cfad_array = np.empty((40,len(binss[k])-1,3))
            average = np.empty((40,3))
            median = np.empty((40,3))
            wp = v[0]
            wp_tta = v[1]
            wp_notta = v[2]
        
            for hgt in range(wp.shape[0]):
                
                row1 = wp[hgt,:]
                row2 = wp_tta[hgt,:]
                row3 = wp_notta[hgt,:]
        
                for n,r in enumerate([row1,row2,row3]):
        
                    ' following CFAD Yuter et al (1995) '
                    freq,bins=np.histogram(r[~np.isnan(r)],
                                            bins=binss[k])
                    hist_array[hgt,:,n] = freq
                    cfad_array[hgt,:,n] = 100.*(freq/float(freq.sum()))
        
                    bin_middle = (bins[1:]+bins[:-1])/2.
                    average[hgt,n] = np.sum(freq*bin_middle)/freq.sum()
                    median[hgt,n] = np.percentile(r[~np.isnan(r)],50)
            
            if k == 'wspd':
                hist_array_spd = hist_array
                cfad_array_spd = cfad_array
                average_spd = average
                median_spd = median
            else:                
                hist_array_dir = hist_array
                cfad_array_dir = cfad_array
                average_dir = average
                median_dir = median
    
        return [hist_array_spd,
                hist_array_dir,
                cfad_array_spd,
                cfad_array_dir,
                binss['wspd'],
                binss['wdir'],
                wprof_df.hgt,
                wp_hours,
                tta_hours,
                notta_hours,
                average_spd,
                average_dir,
                median_spd,
                median_dir]
        
コード例 #3
0
def processv2(year=[],wdsurf=None,
               wdwpro=None,rainbb=None,
               raincz=None, nhours=None):
        
        ''' v2: target loop moved into year loop '''
        
        
        binss={'wdir': np.arange(0,370,10),
               'wspd': np.arange(0,36,1),
               'u': np.arange(-15,21,1),
               'v': np.arange(-14,21,1),
               }
               
        target = ['wdir','wspd']
        arrays = {}
        wsp = np.empty((40,1))
        wsp_tta = np.empty((40,1))
        wsp_notta = np.empty((40,1))
        wdr = np.empty((40,1))
        wdr_tta = np.empty((40,1))
        wdr_notta = np.empty((40,1))
        
        for y in year:
            print('Processing year {}'.format(y))
            
            ' tta analysis '
            tta = tta_analysis(y)
            tta.start_df(wdir_surf  = wdsurf,
                         wdir_wprof = wdwpro,
                         rain_bby   = rainbb,
                         rain_czd   = raincz,
                         nhours     = nhours)
    
            ' retrieve dates '
            include_dates = tta.include_dates
            tta_dates     = tta.tta_dates
            notta_dates   = tta.notta_dates
    
            ' read wprof '
            wprof_df = parse_data.windprof(y)
            
            for n,t in enumerate(target):
                
                wprof = wprof_df.dframe[t]        
        
                ' wprof partition '
                wprof = wprof.loc[include_dates]    # all included
                wprof_tta = wprof.loc[tta_dates]    # only tta
                wprof_notta = wprof.loc[notta_dates]# only notta
                
                s1 = np.squeeze(pandas2stack(wprof))
                if wprof_tta.size > 0:
                    s2 = np.squeeze(pandas2stack(wprof_tta))
                    ttaok = True
                else:
                    ttaok =False
                s3 = np.squeeze(pandas2stack(wprof_notta))
        
                if t == 'wdir':
                    wdr = np.hstack((wdr,s1))
                    if ttaok is True:
                        if s2.ndim == 1:
                            s2=np.expand_dims(s2,axis=1)
                        wdr_tta = np.hstack((wdr_tta,s2))
                    wdr_notta = np.hstack((wdr_notta, s3))                    
                else:
                    wsp = np.hstack((wsp,s1))
                    if ttaok is True:
                        if s2.ndim == 1:
                            s2=np.expand_dims(s2,axis=1)                        
                        wsp_tta = np.hstack((wsp_tta,s2))
                    wsp_notta = np.hstack((wsp_notta, s3))

        arrays['wdir']=[wdr,wdr_tta,wdr_notta]
        arrays['wspd']=[wsp,wsp_tta,wsp_notta]
                
        uw = -wsp*np.sin(np.radians(wdr))
        uw_tta = -wsp_tta*np.sin(np.radians(wdr_tta))
        uw_notta = -wsp_notta*np.sin(np.radians(wdr_notta))

        vw = -wsp*np.cos(np.radians(wdr))
        vw_tta = -wsp_tta*np.cos(np.radians(wdr_tta))
        vw_notta = -wsp_notta*np.cos(np.radians(wdr_notta))        

        arrays['u']=[uw,uw_tta,uw_notta]
        arrays['v']=[vw,vw_tta,vw_notta]

        ''' total hours, first rows are empty '''                
        _,wp_hours = wsp.shape
        _,tta_hours = wsp_tta.shape
        _,notta_hours = wsp_notta.shape    
        wp_hours -= 1
        tta_hours-= 1
        notta_hours -= 1
        
        ' initialize arrays '
        hist_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        hist_array_dir = np.empty((40,len(binss['wdir'])-1,3))
        cfad_array_spd = np.empty((40,len(binss['wspd'])-1,3))
        cfad_array_dir = np.empty((40,len(binss['wdir'])-1,3))        
        average_spd = np.empty((40,3))
        average_dir = np.empty((40,3))
        median_spd = np.empty((40,3))
        median_dir = np.empty((40,3))
        
        ' loop for variable (wdir,wspd) '
        for k,v in arrays.iteritems():        
        
            hist_array = np.empty((40,len(binss[k])-1,3))
            cfad_array = np.empty((40,len(binss[k])-1,3))
            average = np.empty((40,3))
            median = np.empty((40,3))
            
            ' extract value'
            wp = v[0]
            wp_tta = v[1]
            wp_notta = v[2]
        
            ' makes CFAD '
            for hgt in range(wp.shape[0]):
                
                row1 = wp[hgt,:]
                row2 = wp_tta[hgt,:]
                row3 = wp_notta[hgt,:]
        
                for n,r in enumerate([row1,row2,row3]):
        
                    ' following CFAD Yuter et al (1995) '
                    freq,bins=np.histogram(r[~np.isnan(r)],
                                            bins=binss[k])
                    hist_array[hgt,:,n] = freq
                    cfad_array[hgt,:,n] = 100.*(freq/float(freq.sum()))
        
                    bin_middle = (bins[1:]+bins[:-1])/2.
                    average[hgt,n] = np.sum(freq*bin_middle)/freq.sum()
                    median[hgt,n] = np.percentile(r[~np.isnan(r)],50)
            
            if k == 'wspd':
                hist_array_spd = hist_array
                cfad_array_spd = cfad_array
                average_spd = average
                median_spd = median
            elif k == 'wdir':                
                hist_array_dir = hist_array
                cfad_array_dir = cfad_array
                average_dir = average
                median_dir = median
            elif k == 'u':
                hist_array_u = hist_array
                cfad_array_u = cfad_array
                average_u = average
                median_u = median                
            elif k == 'v':
                hist_array_v = hist_array
                cfad_array_v = cfad_array
                average_v = average
                median_v = median
    
        return [hist_array_spd,
                hist_array_dir,
                hist_array_u,
                hist_array_v,
                cfad_array_spd,
                cfad_array_dir,
                cfad_array_u,
                cfad_array_v,
                binss['wspd'],
                binss['wdir'],
                binss['u'],
                binss['v'],
                wprof_df.hgt,
                wp_hours,
                tta_hours,
                notta_hours,
                average_spd,
                average_dir,
                average_u,
                average_v,
                median_spd,
                median_dir,
                median_u,
                median_v,
                ]
#                 'wdir_layer': [0,500],
#                 'rain_czd':   0.25,
#                 'nhours':     2
#               } for a in [140,160]]
#
# params = params_nh + params_wth

try:
    results
except NameError:
    #    results = {nparam:list() for nparam in range(len(params))}
    results = {nparam: pd.DataFrame() for nparam in range(len(params))}
    first = True
    for y in years:
        print y
        tta = tta_analysis(y)
        if first:
            for n, p in enumerate(params):
                tta.start_df_layer(**p)
                #                results[n] = tta.print_stats(return_results=True,
                #                                             skip_print=True)
                results[n] = results[n].append(tta.df[tta.df.tta])
            first = False
        else:
            for n, p in enumerate(params):
                tta.start_df_layer(**p)
                r = tta.print_stats(return_results=True, skip_print=True)

                results[n] = np.vstack((results[n], r))

first = True
コード例 #5
0
def params(wdir_surf=None,wdir_wprof=None,
           wdir_thres=None,wdir_layer=None,
           rain_bby=None, rain_czd=None,
           nhours=None):
    
    
    years = [1998]+range(2001,2013)

    if wdir_surf is not None:
        params = dict(wdir_surf  = wdir_surf,
                      wdir_wprof = wdir_wprof,
                      rain_bby   = rain_bby,
                      rain_czd   = rain_czd,
                      nhours     = nhours)
    elif wdir_thres is not None:
        params = dict(wdir_thres  = wdir_thres,
                      wdir_layer  = wdir_layer,
                      rain_bby    = rain_bby,
                      rain_czd    = rain_czd,
                      nhours      = nhours)

    print(params)
    
    for y in years:
        
        tta=tta_analysis(y)
        
        if wdir_surf is not None:
            tta.start_df(**params)
        elif wdir_thres is not None:
            tta.start_df_layer(**params)
        
        if y == 1998:
            results = tta.print_stats(header=True,return_results=True)
        else:
            r = tta.print_stats(return_results=True)
            results = np.vstack((results,r))


    ''' print totals '''
    print('-'*((6*13)+12))
    
    yer_col = '{:6}'
    bby_col = '{:7.0f}{:7.0f}{:7.0f}'
    czd_col = '{:7.0f}{:7.0f}{:7.0f}'
    rto_col = '{:6.1f}{:6.1f}'
    hrs_col = '{:6.0f}{:6.0f}'
    prc_col = '{:6.0f}{:6.0f}'
    
    bby_total   = results[:,0].sum()
    bby_tta     = results[:,1].sum()
    bby_notta   = results[:,2].sum()
    czd_total   = results[:,3].sum()
    czd_tta     = results[:,4].sum()
    czd_notta   = results[:,5].sum()
    tta_ratio   = czd_tta/bby_tta
    notta_ratio = czd_notta/bby_notta
    tta_hours   = results[:,8].sum()
    notta_hours = results[:,9].sum()
    rain_perc_bby = np.round(100.*(bby_tta/bby_total),0).astype(int)
    rain_perc_czd = np.round(100.*(czd_tta/czd_total),0).astype(int)
    
    col0 = yer_col.format('')
    col1 = bby_col.format(bby_total, bby_tta, bby_notta)
    col2 = czd_col.format(czd_total, czd_tta, czd_notta)
    col3 = rto_col.format(tta_ratio, notta_ratio)
    col4 = hrs_col.format(tta_hours, notta_hours)
    col5 = prc_col.format(rain_perc_bby, rain_perc_czd)
    
    print(col0+col1+col2+col3+col4+col5)
    
    
コード例 #6
0
U = pd.Series(name='U-comp')
V = pd.Series(name='V-comp')

try:
    results

except NameError:

    results = collections.OrderedDict()
    for tr in thres:
        results[tr] = {'U': U, 'V': V}

    for year in years:
        for p in params:
            tta = tta_analysis(year=year)

            tta.start_df_layer(**p)
            tta_dates = tta.tta_dates

            " parse surface and profile obs "
            bby = parse_data.surface('bby', year=year)
            wpr = parse_data.windprof(year=year)

            wpr_tta = wpr.dframe.loc[tta_dates]
            wdr_tta = wpr_tta['wdir']
            wsp_tta = wpr_tta['wspd']

            bby_tta = bby.dframe.loc[tta_dates]

            " append surface values to windprof "