def test_fit_not_changing_data(self): """Test fit does not change X.""" df = d.create_df_1() x = NominalToIntegerTransformer(columns=["a", "b"]) x.fit(df) h.assert_equal_dispatch( expected=d.create_df_1(), actual=df, msg="Check X not changing during fit", )
def test_check_is_fitted_called(self, mocker): """Test that BaseTransformer check_is_fitted called.""" df = d.create_df_1() x = NominalToIntegerTransformer(columns=["a", "b"]) x.fit(df) expected_call_args = {0: {"args": (["mappings"], ), "kwargs": {}}} with h.assert_function_call(mocker, tubular.base.BaseTransformer, "check_is_fitted", expected_call_args): x.transform(df)
def test_non_mappable_rows_raises_error(self): """Test that rows that cannot be mapped result in an exception.""" df = d.create_df_1() x = NominalToIntegerTransformer(columns=["a", "b"]) x.fit(df) df["a"] = df["a"] + 1 with pytest.raises( ValueError, match= "nulls would be introduced into column a from levels not present in mapping", ): x.transform(df)
def test_learnt_values_not_modified(self): """Test that the mappings from fit are not changed in transform.""" df = d.create_df_1() x = NominalToIntegerTransformer(columns=["a", "b"]) x.fit(df) x2 = NominalToIntegerTransformer(columns=["a", "b"]) x2.fit_transform(df) h.assert_equal_dispatch( expected=x.mappings, actual=x2.mappings, msg="Impute values not changed in transform", )
def test_non_mappable_rows_raises_error(self): """Test that rows that cannot be mapped result in an exception.""" x = NominalToIntegerTransformer(columns=["a", "b"]) df = d.create_df_1() x.fit(df) df_transformed = x.transform(df) df_transformed["b"] = df_transformed["b"] + 1 with pytest.raises( ValueError, match= "nulls introduced from levels not present in mapping for column: b", ): x.inverse_transform(df_transformed)
def test_super_transform_called(self, mocker): """Test that BaseTransformer.transform called.""" df = d.create_df_1() x = NominalToIntegerTransformer(columns="a") x.fit(df) expected_call_args = {0: {"args": (d.create_df_1(), ), "kwargs": {}}} with h.assert_function_call( mocker, tubular.base.BaseTransformer, "transform", expected_call_args, return_value=d.create_df_1(), ): x.transform(df)
def test_fit_returns_self(self): """Test fit returns self?""" df = d.create_df_1() x = NominalToIntegerTransformer(columns=["a", "b"]) x_fitted = x.fit(df) assert ( x_fitted is x ), "Returned value from NominalToIntegerTransformer.fit not as expected."
def test_learnt_values(self): """Test that the impute values learnt during fit are expected.""" df = d.create_df_1() x = NominalToIntegerTransformer(columns=["a", "b"], start_encoding=1) x.fit(df) h.test_object_attributes( obj=x, expected_attributes={ "mappings": { "a": {k: i for i, k in enumerate(df["a"].unique(), 1)}, "b": {k: i for i, k in enumerate(df["b"].unique(), 1)}, } }, msg="mappings attribute", )
def test_super_fit_called(self, mocker): """Test that fit calls BaseTransformer.fit.""" df = d.create_df_1() x = NominalToIntegerTransformer(columns=["a", "b"]) spy = mocker.spy(tubular.base.BaseTransformer, "fit") x.fit(df) assert spy.call_count == 1, "unexpected number of calls to BaseTransformer.fit" call_args = spy.call_args_list[0] call_pos_args = call_args[0] call_kwargs = call_args[1] expected_kwargs = {} assert (call_kwargs == expected_kwargs ), "unexpected kwargs in BaseTransformer.fit call" expected_pos_args = (x, d.create_df_1(), None) assert len(expected_pos_args) == len( call_pos_args ), "unexpected # positional args in BaseTransformer.fit call" assert (expected_pos_args[0] == call_pos_args[0] ), "unexpected 1st positional arg in BaseTransformer.fit call" h.assert_equal_dispatch( expected_pos_args[1:3], call_pos_args[1:3], "unexpected 2nd, 3rd positional arg in BaseTransformer.fit call", )