コード例 #1
0
def get_model(
        model_spec,
        kernel_initializer=tf.initializers.he_normal(),
        depthwise_initializer=depthwise_initializers.depthwise_he_normal(),
        dense_initializer=tf.initializers.random_normal(stddev=0.01),
        kernel_regularizer=_l2_regularizer(0.00004),
        batch_norm_epsilon=0.001,
        force_stateless_batch_norm=False,
        dropout_rate=0,
        num_classes=1001):
    """Get a new Layer representing an architecture or one-shot model.

  Args:
    model_spec: basic_specs.ConvTowerSpec namedtuple controlling the
        search space to use.
    kernel_initializer: TF initializer to use for the kernels of ordinary
        convolutions.
    depthwise_initializer: TF initializer to use for the kernels of depthwise
        convolutions.
    dense_initializer: TF initializer to use for the final dense
        (fully connected) layer of the network.
    kernel_regularizer: TF regularizer to apply to kernels.
    batch_norm_epsilon: Positive float, the value of `epsilon` to use in batch
        normalization to prevent division by zero.
    force_stateless_batch_norm: Boolean. If true, we will run all batch norm
        ops in 'training' mode, even at eval time.
    dropout_rate: Float between 0 and 1. The fraction of elements to drop
        immediately before the final 1x1 convolution.
    num_classes: An integer. The expected number of output classes.

  Returns:
    A layers.Sequential object whose aux_inputs are detection endpoints.
  """
    if dropout_rate < 0 or dropout_rate > 1:
        raise ValueError(
            'dropout_rate must be between 0 and 1: {:f}'.format(dropout_rate))

    if model_spec.filters_base < 1:
        raise ValueError(
            'filters_base must be a positive integer: {:s}'.format(
                str(model_spec.filters_base)))

    params = {
        'filters_base': model_spec.filters_base,
        'kernel_initializer': kernel_initializer,
        'depthwise_initializer': depthwise_initializer,
        'dense_initializer': dense_initializer,
        'kernel_regularizer': kernel_regularizer,
        'batch_norm_epsilon': batch_norm_epsilon,
        'force_stateless_batch_norm': force_stateless_batch_norm,
        'dropout_rate': dropout_rate,
        'num_classes': num_classes,
    }
    return _build_model(params, model_spec)
コード例 #2
0
    def test_depthwise_he_normal_initializer_end_to_end(self):
        # This is an end-to-end test for the depthwise_he_normal() function.
        # We apply a depthwise_he_normal() to a tensor, and verify that the
        # distribution of outputs matches what we expect.
        input_tensor = tf.random.normal(shape=(32, 20, 20, 1024),
                                        mean=0.0,
                                        stddev=1)

        kernel_initializer = depthwise_initializers.depthwise_he_normal()
        kernel = tf.get_variable(name='kernel',
                                 initializer=kernel_initializer,
                                 shape=[5, 5, 1024, 1])
        output_tensor = tf.nn.depthwise_conv2d(tf.nn.relu(input_tensor),
                                               kernel,
                                               strides=(1, 1, 1, 1),
                                               padding='VALID')

        self.evaluate(tf.global_variables_initializer())
        result = self.evaluate(output_tensor)
        self.assertNear(np.mean(result), 0.0, 0.05)
        self.assertNear(np.std(result), 1.0, 0.05)