コード例 #1
0
    def train(self, X, y, do_optimize=True):
        """
        Computes the Cholesky decomposition of the covariance of X and
        estimates the GP hyperparameters by optimizing the marginal
        loglikelihood. The prior mean of the GP is set to the empirical
        mean of X.

        Parameters
        ----------
        X: np.ndarray (N, D)
            Input data points. The dimensionality of X is (N, D),
            with N as the number of points and D is the number of features.
        y: np.ndarray (N,)
            The corresponding target values.
        do_optimize: boolean
            If set to true the hyperparameters are optimized otherwise
            the default hyperparameters of the kernel are used.
        """

        if self.normalize_input:
            # Normalize input to be in [0, 1]
            self.X, self.lower, self.upper = normalization.zero_one_normalization(
                X, self.lower, self.upper)
        else:
            self.X = X

        if self.normalize_output:
            # Normalize output to have zero mean and unit standard deviation
            self.y, self.y_mean, self.y_std = normalization.zero_mean_unit_var_normalization(
                y)
            if self.y_std == 0:
                raise ValueError(
                    "Cannot normalize output. All targets have the same value")
        else:
            self.y = y

        # Use the empirical mean of the data as mean for the GP
        self.mean = np.mean(self.y, axis=0)

        self.gp = george.GP(self.kernel, mean=self.mean)

        if do_optimize:
            self.hypers = self.optimize()
            self.gp.kernel[:] = self.hypers[:-1]
            self.noise = np.exp(self.hypers[-1])  # sigma^2
        else:
            self.hypers = self.gp.kernel[:]
            self.hypers = np.append(self.hypers, np.log(self.noise))

        logger.debug("GP Hyperparameters: " + str(self.hypers))

        try:
            self.gp.compute(self.X, yerr=np.sqrt(self.noise))
        except np.linalg.LinAlgError:
            self.noise *= 10
            self.gp.compute(self.X, yerr=np.sqrt(self.noise))

        self.is_trained = True
コード例 #2
0
    def predict(self, X_test, full_cov=False, **kwargs):
        r"""
        Returns the predictive mean and variance of the objective function at
        the given test points.

        Parameters
        ----------
        X_test: np.ndarray (N, D)
            Input test points
        full_cov: bool
            If set to true than the whole covariance matrix between the test points is returned

        Returns
        ----------
        np.array(N,)
            predictive mean
        np.array(N,) or np.array(N, N) if full_cov == True
            predictive variance

        """

        if not self.is_trained:
            raise Exception('Model has to be trained first!')

        if self.normalize_input:
            X_test_norm, _, _ = normalization.zero_one_normalization(
                X_test, self.lower, self.upper)
        else:
            X_test_norm = X_test

        mu, var = self.gp.predict(self.y, X_test_norm)

        if self.normalize_output:
            mu = normalization.zero_mean_unit_var_unnormalization(
                mu, self.y_mean, self.y_std)
            var *= self.y_std**2
        if not full_cov:
            var = np.diag(var)

        # Clip negative variances and set them to the smallest
        # positive float value
        if var.shape[0] == 1:
            var = np.clip(var, np.finfo(var.dtype).eps, np.inf)
        else:
            var = np.clip(var, np.finfo(var.dtype).eps, np.inf)
            var[np.where((var < np.finfo(var.dtype).eps)
                         & (var > -np.finfo(var.dtype).eps))] = 0

        return mu, var
コード例 #3
0
    def sample_functions(self, X_test, n_funcs=1):
        """
        Samples F function values from the current posterior at the N
        specified test points.

        Parameters
        ----------
        X_test: np.ndarray (N, D)
            Input test points
        n_funcs: int
            Number of function values that are drawn at each test point.

        Returns
        ----------
        function_samples: np.array(F, N)
            The F function values drawn at the N test points.
        """

        if self.normalize_input:
            X_test_norm, _, _ = normalization.zero_one_normalization(
                X_test, self.lower, self.upper)
        else:
            X_test_norm = X_test

        if not self.is_trained:
            raise Exception('Model has to be trained first!')

        funcs = self.gp.sample_conditional(self.y, X_test_norm, n_funcs)

        if self.normalize_output:
            funcs = normalization.zero_mean_unit_var_unnormalization(
                funcs, self.y_mean, self.y_std)

        if len(funcs.shape) == 1:
            return funcs[None, :]
        else:
            return funcs
コード例 #4
0
ファイル: mtbo_gp.py プロジェクト: zwt233/autotf
def normalize(X, lower, upper):
    X_norm, _, _ = normalization.zero_one_normalization(
        X[:, :-1], lower, upper)
    X_norm = np.concatenate((X_norm, np.rint(X[:, None, -1])), axis=1)
    return X_norm
コード例 #5
0
ファイル: fabolas_gp.py プロジェクト: zwt233/autotf
    def train(self, X, y, do_optimize=True, **kwargs):
        X_norm, _, _ = normalization.zero_one_normalization(
            X[:, :-1], self.lower, self.upper)
        s_ = self.basis_func(X[:, -1])[:, None]
        self.X = np.concatenate((X_norm, s_), axis=1)

        if self.normalize_output:
            # Normalize output to have zero mean and unit standard deviation
            self.y, self.y_mean, self.y_std = normalization.zero_mean_unit_var_normalization(
                y)
        else:
            self.y = y

        # Use the mean of the data as mean for the GP
        mean = np.mean(self.y, axis=0)
        self.gp = george.GP(self.kernel, mean=mean)

        if do_optimize:
            # We have one walker for each hyperparameter configuration
            sampler = emcee.EnsembleSampler(self.n_hypers,
                                            len(self.kernel.pars) + 1,
                                            self.loglikelihood)

            # Do a burn-in in the first iteration
            if not self.burned:
                # Initialize the walkers by sampling from the prior
                if self.prior is None:
                    self.p0 = np.random.rand(self.n_hypers,
                                             len(self.kernel.pars) + 1)
                else:
                    self.p0 = self.prior.sample_from_prior(self.n_hypers)
                # Run MCMC sampling
                self.p0, _, _ = sampler.run_mcmc(self.p0,
                                                 self.burnin_steps,
                                                 rstate0=self.rng)

                self.burned = True

            # Start sampling
            pos, _, _ = sampler.run_mcmc(self.p0,
                                         self.chain_length,
                                         rstate0=self.rng)

            # Save the current position, it will be the start point in
            # the next iteration
            self.p0 = pos

            # Take the last samples from each walker
            self.hypers = sampler.chain[:, -1]

        else:
            if self.hypers is None:
                self.hypers = self.gp.kernel[:].tolist()
                self.hypers.append(self.noise)
                self.hypers = [self.hypers]

        self.models = []
        for sample in self.hypers:

            # Instantiate a GP for each hyperparameter configuration
            kernel = deepcopy(self.kernel)
            kernel.pars = np.exp(sample[:-1])
            noise = np.exp(sample[-1])
            model = FabolasGP(kernel,
                              basis_function=self.basis_func,
                              normalize_output=self.normalize_output,
                              noise=noise,
                              lower=self.lower,
                              upper=self.upper,
                              rng=self.rng)
            model.train(X, y, do_optimize=False)
            self.models.append(model)

        self.is_trained = True
コード例 #6
0
ファイル: fabolas_gp.py プロジェクト: zwt233/autotf
 def normalize(self, X):
     X_norm, _, _ = normalization.zero_one_normalization(
         X[:, :-1], self.lower, self.upper)
     s_ = self.basis_function(X[:, -1])[:, None]
     X_norm = np.concatenate((X_norm, s_), axis=1)
     return X_norm
コード例 #7
0
    def train(self, X, y, do_optimize=True, **kwargs):
        """
        Performs MCMC sampling to sample hyperparameter configurations from the
        likelihood and trains for each sample a GP on X and y

        Parameters
        ----------
        X: np.ndarray (N, D)
            Input data points. The dimensionality of X is (N, D),
            with N as the number of points and D is the number of features.
        y: np.ndarray (N,)
            The corresponding target values.
        do_optimize: boolean
            If set to true we perform MCMC sampling otherwise we just use the
            hyperparameter specified in the kernel.
        """

        if self.normalize_input:
            # Normalize input to be in [0, 1]
            self.X, self.lower, self.upper = normalization.zero_one_normalization(X, self.lower, self.upper)

        else:
            self.X = X

        if self.normalize_output:
            # Normalize output to have zero mean and unit standard deviation
            self.y, self.y_mean, self.y_std = normalization.zero_mean_unit_var_normalization(y)
            if self.y_std == 0:
                raise ValueError("Cannot normalize output. All targets have the same value")
        else:
            self.y = y

        # Use the mean of the data as mean for the GP
        self.mean = np.mean(self.y, axis=0)
        self.gp = george.GP(self.kernel, mean=self.mean)

        if do_optimize:
            # We have one walker for each hyperparameter configuration
            sampler = emcee.EnsembleSampler(self.n_hypers,
                                            len(self.kernel.pars) + 1,
                                            self.loglikelihood)
            sampler.random_state = self.rng.get_state()
            # Do a burn-in in the first iteration
            if not self.burned:
                # Initialize the walkers by sampling from the prior
                if self.prior is None:
                    self.p0 = self.rng.rand(self.n_hypers, len(self.kernel.pars) + 1)
                else:
                    self.p0 = self.prior.sample_from_prior(self.n_hypers)
                # Run MCMC sampling
                self.p0, _, _ = sampler.run_mcmc(self.p0,
                                                 self.burnin_steps,
                                                 rstate0=self.rng)

                self.burned = True

            # Start sampling
            pos, _, _ = sampler.run_mcmc(self.p0,
                                         self.chain_length,
                                         rstate0=self.rng)

            # Save the current position, it will be the start point in
            # the next iteration
            self.p0 = pos

            # Take the last samples from each walker
            self.hypers = sampler.chain[:, -1]

        else:
            self.hypers = self.gp.kernel[:].tolist()
            self.hypers.append(self.noise)
            self.hypers = [self.hypers]

        self.models = []
        for sample in self.hypers:

            # Instantiate a GP for each hyperparameter configuration
            kernel = deepcopy(self.kernel)
            kernel.pars = np.exp(sample[:-1])
            noise = np.exp(sample[-1])
            model = GaussianProcess(kernel,
                                    normalize_output=self.normalize_output,
                                    normalize_input=self.normalize_input,
                                    noise=noise,
                                    lower=self.lower,
                                    upper=self.upper,
                                    rng=self.rng)
            model.train(X, y, do_optimize=False)
            self.models.append(model)

        self.is_trained = True