コード例 #1
0
ファイル: fut_list.py プロジェクト: StockBillion/HighWin
    def __init__(self, _good_list):
        index.TurtleArgs.__init__(self)
        self.sdsr = data.StockData_SQLite(self.files[0])
        self.long_list, self.short_list = [], []

        for _row in _good_list:
            for _idx in range(0, len(_row['codes'])):
                self.statis_fut(_row['codes'][_idx], _row['index'][_idx],
                                _row['names'][_idx])

        long_turtle = pandas.DataFrame(self.long_list,
                                       columns=[
                                           'ts_code', 'date', 'state', 'close',
                                           'high', 'low', 'rise', 'drop',
                                           'wave', 'ts_name'
                                       ])
        short_turtle = pandas.DataFrame(self.short_list,
                                        columns=[
                                            'ts_code', 'date', 'state',
                                            'close', 'high', 'low', 'rise',
                                            'drop', 'wave', 'ts_name'
                                        ])
        long_turtle.to_csv("fut_turtle.csv")

        # long_turtle = pandas.DataFrame(self.long_list, columns=[ 'ts_code', 'index', 'date', 'close',
        #         'high', 'low', 'ts_name' ])
        # print( long_turtle )

        print(long_turtle[long_turtle['state'] > 0])
        print(short_turtle[short_turtle['state'] > 0])
        print(long_turtle[long_turtle['rise'] < 5])
        print(short_turtle[short_turtle['drop'] > -5])
コード例 #2
0
ファイル: stock.py プロジェクト: StockBillion/HighWin
    def __init__(self):
        utils.TradeTest.__init__(self)
        sdsr = data.StockData_SQLite(self.files[0])

        self.curr_closes = {}
        self.float_str = StockDataSource.float_date(self.dates[0])
        self.float_end = StockDataSource.float_date(self.dates[1])

        for code in self.codes:
            sdsr.read_stock(code, self.dates[0], self.dates[1])
            if not len(sdsr.stocks):
                sdsr.load(code, self.dates[0], self.dates[1], self.params[0])
            if not len(sdsr.stocks):
                continue
            data_list, _dates = sdsr.parse_price()
            _data_vec = numpy.transpose(data_list)

            turtle = index.TurtleIndex()
            index_long = index.LongTurtleIndex(turtle, _data_vec,
                                               self.turtle_args[2],
                                               self.turtle_args[3],
                                               self.turtle_args[0],
                                               self.turtle_args[1])
            self.fixed_invest(code, _data_vec, index_long)

            print("%s %s, use time %.02f seconds." %
                  ('single_turtle', code, time.time() - self.start))
            self.account.save_records(code, self.files[2])
            self.plot(data_list, index_long, code)
コード例 #3
0
    def calc_index(self, data_db, _index_code, stock_count = 300):
        sdsr = data.StockData_SQLite( data_db )
        y, m, count = 2005, 7, 0
        sttdate, enddate = '20000101', '20190601'
        delta1, delta2 = (self.cycle_month[0]/12.)*365., (self.cycle_month[1]/12.)*365.

        for i in range(0, 56):
            _end = dt.datetime(y, m, 1)
            _stt  = _end + dt.timedelta(days=-30)
            _stt = StockDataSource.str_date(_stt)
            _end = StockDataSource.str_date(_end)

            m += 3
            if m > 12:
                y, m = y+1, 1

            df = StockData_Tushare.ts_api.index_weight(index_code=_index_code, 
                start_date = _stt, end_date = _end)
            if len(df) < stock_count:
                continue

            consts = df.head(stock_count)
            for index, row in consts.iterrows():
                code = row['con_code']
                _sql = 'select ts_code, count(*) as rows from strong_indexs where ts_code = "%s";'%code
                _data_row = pd_sql.read_sql(_sql, self.conn)
                if _data_row.iloc[0, 1] > 0:
                    continue

                sdsr.read_stock(code, sttdate, enddate)
                _len = len(sdsr.stocks)
                if not _len:
                    continue

                data_list, _dates = sdsr.parse_price()
                data_vect = numpy.transpose(data_list)
                data_vect[4] = list(map(lambda x: math.log(x), data_vect[4]))

                chgs1, ks1, bs1 = self.calc_index(data_vect[0], data_vect[4], delta1)
                chgs2, ks2, bs2 = self.calc_index(data_vect[0], data_vect[4], delta2)

                _sql = 'INSERT INTO strong_indexs (ts_code, trade_date, close, chg1, k1, b1, chg2, k2, b2)\
                        VALUES (?,?,?,?,?,?,?,?,?);'
                _codes = [code for _ in range(_len)]
                _vect = [_codes, _dates, data_vect[4], chgs1, ks1, bs1, chgs2, ks2, bs2]
                self.curs.executemany( _sql, numpy.transpose( _vect ) )

            # count = self.calc(df.head(30), sdsr)
            print( 'calc %d stocks\' index on %s.'%(count, _end) )
コード例 #4
0
ファイル: stock.py プロジェクト: StockBillion/HighWin
    def __init__(self):
        index.TurtleArgs.__init__(self)

        title = 'plot['
        for code in self.codes:
            title = '%s%s' % (title, code)
        title = '%s]' % title
        plot = utils.StockDisp(title, 1)

        sdsr = data.StockData_SQLite(self.files[0])
        turtle = index.TurtleIndex()

        for code in self.codes:
            sdsr.load(code, self.dates[0], self.dates[1], self.params[0],
                      self.params[1])
            if not len(sdsr.stocks):
                continue
            data_list, _dates = sdsr.parse_price()
            _data_vec = numpy.transpose(data_list)

            if self.params[2] == 'long':
                long_index = index.LongTurtleIndex(turtle, _data_vec,
                                                   self.turtle_args[2],
                                                   self.turtle_args[3],
                                                   self.turtle_args[0],
                                                   self.turtle_args[1])
                # short_index = index.LongTurtleIndex(turtle, _data_vec, self.turtle_args[4],
                #         self.turtle_args[5], self.turtle_args[0], self.turtle_args[1])
            else:
                long_index = index.ShortTurtleIndex(turtle, _data_vec,
                                                    self.turtle_args[2],
                                                    self.turtle_args[3],
                                                    self.turtle_args[0],
                                                    self.turtle_args[1])
                # short_index = index.ShortTurtleIndex(turtle, _data_vec, self.turtle_args[4],
                #         self.turtle_args[5], self.turtle_args[0], self.turtle_args[1])

            info_list = self.list_info1(_data_vec, long_index)
            # info_list = self.list_info2(_data_vec, long_index, short_index['state'] )
            # print( info_list[-80:-40] )
            print(info_list.tail(40))
            info_list.to_csv('%s/%s.csv' % (self.files[2], code))

            plot.LogKDisp(plot.ax1, data_list)
            # plot.LogPlot(plot.ax1, _data_vec[0], turtle_index['long'], 'r')
            # plot.LogPlot(plot.ax1, _data_vec[0], turtle_index['short'], 'y')
            # plot.Plot(plot.ax1, _data_vec[0], self.stim.data['average'], 'b')

        plot.save(title, self.files[3])
コード例 #5
0
ファイル: stock.py プロジェクト: StockBillion/HighWin
    def __init__(self):
        utils.TradeTest.__init__(self)
        sdsr = data.StockData_SQLite(self.files[0])

        self.curr_closes = {}
        self.float_str = StockDataSource.float_date(self.dates[0])
        self.float_end = StockDataSource.float_date(self.dates[1])

        for code in self.codes:
            sdsr.read_stock(code, self.dates[0], self.dates[1])
            if not len(sdsr.stocks):
                sdsr.load(code, self.dates[0], self.dates[1], self.params[0])
            if not len(sdsr.stocks):
                continue
            data_list, _dates = sdsr.parse_price()
            _data_vec = numpy.transpose(data_list)

            pe_table = sdsr.index_daaily(code, self.dates[0], self.dates[1])
コード例 #6
0
#!/usr/bin/env python
#-*- coding: utf8 -*-
import numpy, pandas, datetime as dt, time
from turtle import trade, index, data, utils
from turtle.data import StockDataSource

if __name__ == "__main__":
    args = index.TurtleArgs()
    sdsr = data.StockData_SQLite(args.files[0])

    for code in args.codes:
        sdsr.load(code, args.dates[0], args.dates[1], args.params[0],
                  args.params[1])
        if not len(sdsr.stocks):
            continue
        data_list, _dates = sdsr.parse_price()
        _data_vec = numpy.transpose(data_list)
        turtle = index.TurtleIndex()

        if args.params[2] == 'long':
            long_index = index.LongTurtleIndex(turtle, _data_vec,
                                               args.turtle_args[2],
                                               args.turtle_args[3],
                                               args.turtle_args[0],
                                               args.turtle_args[1])
        else:
            long_index = index.ShortTurtleIndex(turtle, _data_vec,
                                                args.turtle_args[2],
                                                args.turtle_args[3],
                                                args.turtle_args[0],
                                                args.turtle_args[1])
コード例 #7
0
ファイル: test.py プロジェクト: StockBillion/HighWin
        print(
            pandas.DataFrame(
                self.records,
                columns=['date', 'price', 'total', 'cash', 'profit', 'ratio']))
        self.account.status_info()

        print('all day %d, long day %d. %s %s, use time %.02f seconds.' %
              (all_days, long_days, 'single_turtle', code,
               time.time() - self.start))
        self.account.save_records(code, self.files[2])
        self.plot(data_list, index_long, code)


if __name__ == "__main__":
    test = DauLTurtleTrade()
    sdsr = data.StockData_SQLite(test.files[0])

    for code in test.codes:
        sdsr.read_stock(code, test.dates[0], test.dates[1])
        if not len(sdsr.stocks):
            sdsr.load(code, test.dates[0], test.dates[1], test.params[0],
                      test.params[1])
        if not len(sdsr.stocks):
            continue
        data_list, _dates = sdsr.parse_price()
        print(len(data_list))

        test.start_test(test.turtle_args[2], 1000 * 10000)
        test.long_turtle(code, data_list)
        # test.short_turtle( code, data_list )
コード例 #8
0
ファイル: stock.py プロジェクト: StockBillion/HighWin
    def __init__(self):
        index.TurtleArgs.__init__(self)

        if self.files[1] != ':memory:':
            self.csv_file = self.files[1]
        else:
            self.csv_file = 'fund_pos.csv'
        self.positions = PositionCSV.read_csv(self.csv_file)

        sdsr = data.StockData_SQLite(self.files[0])
        pos_list = self.positions.values.tolist()
        prev_closes, total_values, profits, may_loss, stop_prices, loss_ratios = [], [], [], [], [], []
        total_invest, total_value, total_profit, total_loss = 0, 0, 0, 0

        for row in pos_list:
            code, volume, cost_price, good_type = row[0:4]

            sdsr.load(code, self.dates[0], self.dates[1], good_type)
            if not len(sdsr.stocks):
                continue
            data_list, _dates = sdsr.parse_price()
            _data_vec = numpy.transpose(data_list)

            turtle = index.TurtleIndex()
            turtle_index = index.LongTurtleIndex(turtle, _data_vec,
                                                 self.turtle_args[2],
                                                 self.turtle_args[3],
                                                 self.turtle_args[0],
                                                 self.turtle_args[1])
            # info_list = self.list_info(_data_vec, turtle_index )

            list_len = len(turtle_index['key_price'])
            _last = list_len - 1

            _prev_close = _data_vec[4][_last]
            _key_price, _profit_price, _wave = turtle_index['key_price'][
                _last], turtle_index['short'][_last], turtle_index['wave'][
                    _last]
            _value = volume * _prev_close
            _cost = volume * cost_price
            _stop_price = _key_price - _wave * self.turtle_args[0]
            if cost_price > _key_price:
                _stop_price = cost_price - _wave * self.turtle_args[0]
            _mayloss = volume * (_stop_price - cost_price)
            _stop_price = max(_stop_price, _profit_price)

            total_invest += _cost
            total_value += _value
            total_profit += _value - _cost
            total_loss += _mayloss

            prev_closes.append(_prev_close)
            total_values.append(_value)
            stop_prices.append(_stop_price)
            loss_ratios.append(100 * _stop_price / _prev_close - 100)
            profits.append(_value - _cost)
            # profit_prices.append( _profit_price )
            may_loss.append(_mayloss)

        self.positions['prev'] = prev_closes
        self.positions['stop'] = stop_prices
        self.positions['ratio'] = loss_ratios
        self.positions['value'] = total_values
        self.positions['profit'] = profits
        # self.positions['profit_price'] = profit_prices
        self.positions['may_loss'] = may_loss

        self.positions.drop('type', axis=1, inplace=True)
        print(self.positions)
        print( 'SUM invest: %.03f, value: %.03f, profit: %.03f, mayloss: %.03f.' %\
            (total_invest*0.0001, total_value*0.0001, total_profit*0.0001, total_loss*.0001) )
コード例 #9
0
ファイル: stock.py プロジェクト: StockBillion/HighWin
    def __init__(self):
        index.TurtleArgs.__init__(self)

        sdsr = data.StockData_SQLite(self.files[0])
        turtle_list = []

        for code in self.codes:
            sdsr.load(code, self.dates[0], self.dates[1], self.params[0])
            if not len(sdsr.stocks):
                continue
            data_list, _dates = sdsr.parse_price()
            _data_vec = numpy.transpose(data_list)

            turtle = index.TurtleIndex()
            index_long = index.LongTurtleIndex(turtle, _data_vec,
                                               self.turtle_args[2],
                                               self.turtle_args[3],
                                               self.turtle_args[0],
                                               self.turtle_args[1])
            Hl = turtle.high_prices[self.turtle_args[2]]
            # print( Hl )

            turtle = index.TurtleIndex()
            index_short = index.LongTurtleIndex(turtle, _data_vec,
                                                self.turtle_args[3],
                                                self.turtle_args[4],
                                                self.turtle_args[0],
                                                self.turtle_args[1])

            long_list = self.list_info(_data_vec, index_long)
            long_list.tail(30).to_csv('long.csv')
            print(long_list.tail(5))

            short_list = self.list_info(_data_vec, index_short)
            short_list.tail(30).to_csv('short.csv')
            print(short_list.tail(5))

            _last = len(_data_vec[0]) - 1
            _price, _wave = index_long['key_price'][_last], index_long['wave'][
                _last]

            if index_long['state'][_last]:
                _append = _price + _wave
                _stoploss = _price - _wave * self.turtle_args[0]
                _pos_unit = int(1000 / _wave)
            else:
                _append, _stoploss, _pos_unit = 0, 0, 0

            turtle_list.append([
                code, _dates[_last], index_long['state'][_last], _price,
                _append, _stoploss, _pos_unit, index_long['short'][_last],
                _wave, _data_vec[4][_last]
            ])

        print(
            pandas.DataFrame(turtle_list,
                             columns=[
                                 'ts_code', 'date', 'state', 'key_price',
                                 'append', 'stop_loss', 'pos_unit', 'valley',
                                 'wave', 'close'
                             ]))