コード例 #1
0
    def calc_index(self, data_db, _index_code, stock_count = 300):
        sdsr = data.StockData_SQLite( data_db )
        y, m, count = 2005, 7, 0
        sttdate, enddate = '20000101', '20190601'
        delta1, delta2 = (self.cycle_month[0]/12.)*365., (self.cycle_month[1]/12.)*365.

        for i in range(0, 56):
            _end = dt.datetime(y, m, 1)
            _stt  = _end + dt.timedelta(days=-30)
            _stt = StockDataSource.str_date(_stt)
            _end = StockDataSource.str_date(_end)

            m += 3
            if m > 12:
                y, m = y+1, 1

            df = StockData_Tushare.ts_api.index_weight(index_code=_index_code, 
                start_date = _stt, end_date = _end)
            if len(df) < stock_count:
                continue

            consts = df.head(stock_count)
            for index, row in consts.iterrows():
                code = row['con_code']
                _sql = 'select ts_code, count(*) as rows from strong_indexs where ts_code = "%s";'%code
                _data_row = pd_sql.read_sql(_sql, self.conn)
                if _data_row.iloc[0, 1] > 0:
                    continue

                sdsr.read_stock(code, sttdate, enddate)
                _len = len(sdsr.stocks)
                if not _len:
                    continue

                data_list, _dates = sdsr.parse_price()
                data_vect = numpy.transpose(data_list)
                data_vect[4] = list(map(lambda x: math.log(x), data_vect[4]))

                chgs1, ks1, bs1 = self.calc_index(data_vect[0], data_vect[4], delta1)
                chgs2, ks2, bs2 = self.calc_index(data_vect[0], data_vect[4], delta2)

                _sql = 'INSERT INTO strong_indexs (ts_code, trade_date, close, chg1, k1, b1, chg2, k2, b2)\
                        VALUES (?,?,?,?,?,?,?,?,?);'
                _codes = [code for _ in range(_len)]
                _vect = [_codes, _dates, data_vect[4], chgs1, ks1, bs1, chgs2, ks2, bs2]
                self.curs.executemany( _sql, numpy.transpose( _vect ) )

            # count = self.calc(df.head(30), sdsr)
            print( 'calc %d stocks\' index on %s.'%(count, _end) )
コード例 #2
0
def list_info(stock_data, long_index, stop_loss, count=0):
    list_len, starti = len(stock_data[0]), 0
    if count:
        starti = list_len - min(count, list_len)
    _close, _high, _low = stock_data[4], stock_data[2], stock_data[3]
    info_list = []

    for i in range(starti, list_len):
        append_price = long_index['key_price'][i] + long_index['wave'][i]
        stop_price = long_index['key_price'][
            i] - long_index['wave'][i] * stop_loss
        info_list.append([
            StockDataSource.str_date(stock_data[0][i]), _close[i], _high[i],
            _low[i], long_index['state'][i],
            '%.02f' % long_index['key_price'][i],
            '%.02f' % append_price,
            '%.02f' % stop_price,
            '%.02f' % long_index['short'][i],
            '%.02f' % long_index['wave'][i]
        ])

    cols = [
        'trade_date', 'close', 'high', 'low', 'state', 'key_price', 'append',
        'stop', 'profit', 'wave'
    ]
    return pandas.DataFrame(info_list, columns=cols)
コード例 #3
0
ファイル: stock.py プロジェクト: StockBillion/HighWin
    def list_info(self, stock_data, long_index, count=0):
        list_len = len(stock_data[0])
        starti = 0
        if count:
            starti = list_len - min(count, list_len)
        info_list = []

        for i in range(starti, list_len):
            if long_index['state'][i]:
                append_price = long_index['key_price'][i] + long_index['wave'][
                    i]
                stop_price = long_index['key_price'][
                    i] - long_index['wave'][i] * self.turtle_args[0]
            else:
                append_price, stop_price = 0, 0
            info_list.append([
                StockDataSource.str_date(stock_data[0][i]), stock_data[4][i],
                long_index['state'][i],
                '%.02f' % long_index['key_price'][i],
                '%.02f' % append_price, stop_price, long_index['short'][i],
                '%.02f' % long_index['wave'][i]
            ])

        cols = [
            'trade_date', 'close', 'state', 'key_price', 'append', 'stop',
            'profit', 'wave'
        ]
        return pandas.DataFrame(info_list, columns=cols)
コード例 #4
0
    def load_const(self, _index_code, stock_count = 300):
        # sdsr = data.StockData_SQLite(data_db)
        y, m = 2005, 7
        sttdate, enddate = '20000101', '20190601'
        count, stock_codes = 0, []

        for i in range(0, 56):
            _end = dt.datetime(y, m, 1)
            _stt  = _end + dt.timedelta(days=-30)
            _stt = StockDataSource.str_date(_stt)
            _end = StockDataSource.str_date(_end)

            m += 3
            if m > 12:
                y, m = y+1, 1

            df = StockData_Tushare.ts_api.index_weight(index_code=_index_code, 
                start_date = _stt, end_date = _end)
            if len(df) < stock_count:
                continue
            consts = df.head(stock_count)

            for index, row in consts.iterrows():
                code = row['con_code']
                self.read_stock(row['con_code'], sttdate, enddate)
                if len(self.stocks):
                    continue
                self.load_data(row['con_code'], sttdate, enddate)

                stock_codes.append(code)
                count += 1
                if count%20 == 0:
                    print( stock_codes )
                    stock_codes = []

        if len(stock_codes):
            print( stock_codes )
コード例 #5
0
ファイル: trade.py プロジェクト: StockBillion/HighWin
    def daul_turtle0(self, code, data_list, index_long, index_short):
        self._start_test(self.turtle_args[2])

        init_max_count = 3
        all_days, long_days, _max_count = len(data_list[0]), 0, init_max_count
        long_state, short_state, max_value, trade_mode, high_price = 0, 0, 0, 0, 0

        opens, highs, lows, closes = data_list[1], data_list[2], data_list[
            3], data_list[4]
        open_prices, open_dates, max_states = [], [], []

        for _idx in range(self.turtle_args[2], all_days):
            float_date = data_list[0][_idx]
            int_date = StockDataSource.int_date(float_date)
            self.print_progress(int_date)

            if float_date < self.float_str or float_date > self.float_end:
                # self.account.ProfitDaily()
                self.market_values.append(self.account.total_value)
                self.position_ratios.append(self.account.position_value /
                                            self.account.total_value)
                continue

            # self.account.ProfitDaily(int_date)
            self.curr_closes[code] = closes[_idx]
            stock_data = {
                'ts_code': code,
                'key_price': index_long['key_price'][_idx],
                'open': opens[_idx],
                'high': highs[_idx],
                'low': lows[_idx],
                'close': closes[_idx]
            }

            if (not index_long['state'][_idx] or
                    self.account.total_value < max_value * .6) and trade_mode:
                if self.account.total_value < max_value * .6:
                    print(int_date, self.account.total_value / max_value)
                    stock_data['key_price'] = closes[_idx]

            # if not index_long['state'][_idx] and trade_mode:

                if len(self.account.stocks):
                    self.single_clear(stock_data['key_price'], stock_data,
                                      int_date)
                    max_value = self.account.total_value
                if not index_long['state'][_idx]:
                    long_state, short_state, trade_mode = 0, 0, 0
                    self.order_count, _max_count = 0, init_max_count
                    max_states.append(index_long['state'][_idx - 1])

            elif index_long['state'][_idx]:
                long_days += 1
                _wave = index_long['wave'][_idx]

                while trade_mode in [0, 1] and long_state < index_long[
                        'state'][_idx] and long_state < _max_count:
                    # print( int_date, index_long['state'][_idx], index_short['state'][_idx], trade_mode, long_state, short_state )
                    long_state += 1
                    stock_data['key_price'] = index_long['key_price'][_idx] - (
                        index_long['state'][_idx] - long_state) * _wave
                    self.open_order(int_date, stock_data, _wave, opens[_idx])

                if not trade_mode:
                    trade_mode = 1
                    # self.open_value = max(1000*10000, self.account.total_value)
                    max_value = self.open_value = self.account.total_value
                    open_prices.append(index_long['key_price'][_idx])
                    open_dates.append(float_date)

                elif index_long['state'][_idx] >= 4 and trade_mode < 2:
                    trade_mode = 2
                elif not index_short['state'][_idx-1] and index_short['state'][_idx] \
                    and index_long['state'][_idx] > 4 and self.order_count < 10:
                    short_state, trade_mode = 0, 4
                    if len(self.account.stocks):
                        _max_count = init_max_count
                    else:
                        _max_count = 1
                    # print( int_date, self.account.position_value, self.account.total_value )

                if trade_mode == 2 and index_long['state'][_idx] >= 6 and len(open_prices) > 1 and \
                    (open_prices[-1] < open_prices[-2] or open_dates[-1] - open_dates[-2] > 300):
                    trade_mode, high_price = 3, highs[_idx]
                    # print( int_date, self.account.total_value / max_value, index_long['state'][_idx], index_short['state'][_idx] )
                    # print( int_date, self.order_count, long_state, index_long['state'][_idx], short_state, index_short['state'][_idx] )

                if self.account.position_value > self.account.total_value * 7:
                    trade_mode = 5

                while trade_mode in [4] and short_state < index_short['state'][
                        _idx] and short_state < _max_count:
                    short_state += 1
                    stock_data[
                        'key_price'] = index_short['key_price'][_idx] - (
                            index_short['state'][_idx] - short_state) * _wave
                    self.open_order(int_date, stock_data, _wave, opens[_idx])

                if trade_mode == 3:
                    if high_price < highs[_idx]:
                        high_price = highs[_idx]
                    if lows[_idx] < high_price - _wave * 4:
                        self.single_clear(high_price - _wave * 4, stock_data,
                                          int_date)
                        self.order_count = 0

            self.account.UpdateValue(self.curr_closes, int_date)
            max_value = max(max_value, self.account.total_value)
            self.market_values.append(self.account.total_value)
            self.position_ratios.append(self.account.position_value /
                                        self.account.total_value)

        order_list = pandas.DataFrame(self.hist_orders,
                                      columns=[
                                          'date', 'trade_price', 'stop_price',
                                          'volume', 'total_value', 'credit',
                                          'lever', 'ts_code'
                                      ])
        out_list = order_list[[
            'date', 'trade_price', 'volume', 'total_value', 'credit', 'lever'
        ]]
        for i in range(0, len(out_list), 30):
            print(out_list[i:i + 30])
        print(
            pandas.DataFrame(self.year_values,
                             columns=['year', 'cash', 'ratio']))

        if len(open_dates) > len(max_states):
            max_states.append(index_long['state'][-1])
        open_dates = list(
            map(lambda x: StockDataSource.str_date(x), open_dates))

        print(
            pandas.DataFrame({
                "date": open_dates,
                "price": open_prices,
                "max_state": max_states
            }))
        print(
            pandas.DataFrame(
                self.records,
                columns=['date', 'price', 'total', 'cash', 'profit', 'ratio']))

        print('all day %d, long day %d.' % (all_days, long_days))
        self.account.status_info()
コード例 #6
0
    def _Order(self, code, price, volume, order_time):
        _cost, _commision, volume = self.Format(volume, price)
        if not volume:  # or (self.max_credit > 100 and self.credit + _cost - self.cash > self.max_credit):
            return 0
        order_time = StockDataSource.str_date(order_time)

        if _cost < 0 and self.credit > 0:
            self.credit += _cost
            if self.credit < 0:
                self.cash -= self.credit
                self.credit = 0
        elif self.cash < _cost:
            _temp = self.total_value * self.max_credit - self.credit + self.cash
            if self.max_credit and _temp < _cost - self.cash:
                _cost, _commision, volume = self.Format(_temp / price, price)

            # if self.max_credit > 0 and self.total_value*2 < self.credit + _cost - self.cash:
            #     volume = (self.total_value*2 - self.credit) / price
            #     _cost, _commision, volume = self.Format(volume, price)
            #     print('reset order volume: ', order_time, code, price, volume, _cost, _commision, self.cash, self.credit)

            # if self.max_credit > 0 and self.credit + _cost - self.cash > self.max_credit:
            #     print('reset order volume: ', order_time, code, price, volume, _cost, _commision, self.cash, self.credit)
            #     volume = (self.max_credit - self.credit + self.cash) / price
            #     _cost, _commision, volume = self.Format(volume, price)
            #     print('reset order volume: ', order_time, code, price, volume, _cost, _commision, self.cash, self.credit)

            self.credit += _cost - self.cash
            self.cash = 0
        else:
            self.cash -= _cost
        self.cost += _commision

        if code in self.stocks.index:
            _row = self.stocks.loc[code]
            _volume = _row.volume + volume

            # if _volume < 0:
            #     print(self.stocks.loc[code])
            #     raise ValueError("Don't naked short sale.")

            if _volume == 0:
                _cost_price = _row.cost_price
                _loss = _row.volume * _row.cost_price + _cost
                if _loss < 0:
                    self.succeed += 1
                else:
                    self.max_loss = max(
                        self.max_loss, _loss / (_row.volume * _row.cost_price))
            else:
                _cost_price = (_row.volume * _row.cost_price + _cost) / _volume
            mkt_value = _volume * price
            self.stocks.loc[code] = [
                _volume, price, _cost_price, mkt_value, order_time
            ]

        else:
            # if volume <= 0:
            #     print(order_time, code, volume, price, self.cash)
            #     raise ValueError("Don't naked short sale.")
            _volume = volume
            _cost_price = _cost / volume
            mkt_value = volume * price

            _row = {
                'volume': [volume],
                'price': [price],
                'cost_price': [_cost_price],
                'market_value': [mkt_value],
                'order_time': [order_time]
            }
            _index = [code]
            self.stocks = self.stocks.append(pandas.DataFrame(_row, _index))

        if volume < 0:
            self.short_count += 1
        else:
            self.long_count += 1

        self._update_param(order_time)
        lever = self.credit / self.total_value
        back_pump = 1 - self.total_value / self.max_value

        _record = (code, order_time, '%.03f' % price, volume, '%.03f' %
                   (self.cash * .0001), '%.03f' % (self.credit * .0001),
                   '%.03f' % (self.total_value * .0001), '%.03f' %
                   (mkt_value * .0001), '%.03f' % (volume * price * .0001),
                   '%.03f' % (_commision * .0001), '%.03f' % (_cost * .0001),
                   _volume, lever, back_pump)
        self.records.append(_record)

        _clear_codes = []
        for _code, row in self.stocks.iterrows():
            if row['volume'] < 10 and row['volume'] > -10:
                _clear_codes.append(_code)
        if len(_clear_codes):
            self.stocks.drop(index=_clear_codes, axis=0, inplace=True)

        return volume