コード例 #1
0
ファイル: main_fitting.py プロジェクト: sshyran/tvb-epilepsy
def set_hypotheses(head, config):
    # Formulate a VEP hypothesis manually
    hyp_builder = HypothesisBuilder(head.connectivity.number_of_regions,
                                    config)  # .set_normalize(0.99)

    # Regions of Pathological Excitability hypothesis:
    x0_indices = [2, 24]
    x0_values = [0.01, 0.01]
    hyp_builder.set_x0_hypothesis(x0_indices, x0_values)

    # Regions of Model Epileptogenicity hypothesis:
    e_indices = [1, 26]
    # e_indices = list(range(head.connectivity.number_of_regions))
    # e_indices.remove(2)
    # e_indices.remove(25)
    # e_values = np.zeros((head.connectivity.number_of_regions,)) + 0.01
    # e_values[[1, 26]] = 0.99
    # e_values = np.delete(e_values, [2, 25]).tolist()
    e_values = np.array([1.5, 1.25])  # np.array([0.99] * 2)
    hyp_builder.set_e_hypothesis(e_indices, e_values)

    # Regions of Connectivity hypothesis:
    # w_indices = []  # [(0, 1), (0, 2)]
    # w_values = []  # [0.5, 2.0]
    # hypo_builder.set_w_indices(w_indices).set_w_values(w_values)

    hypothesis1 = hyp_builder.build_hypothesis()

    e_indices = [1, 26]  # [1, 2, 25, 26]
    hypothesis2 = hyp_builder.build_hypothesis_from_file(
        "clinical_hypothesis_postseeg", e_indices)
    # Change something manually if necessary
    # hypothesis2.x0_values = [0.01, 0.01]

    return (hypothesis1, hypothesis2)
コード例 #2
0
    def test_read_hypothesis(self):
        test_file = os.path.join(self.config.out.FOLDER_TEMP,
                                 "TestHypothesis.h5")
        hypothesis_builder = HypothesisBuilder(3, self.config)
        dummy_hypothesis = hypothesis_builder.set_e_hypothesis(
            [0], [0.6]).build_hypothesis()

        self.writer.write_hypothesis(dummy_hypothesis, test_file)
        hypothesis = self.reader.read_hypothesis(test_file)

        assert dummy_hypothesis.number_of_regions == hypothesis.number_of_regions
        assert numpy.array_equal(dummy_hypothesis.x0_values,
                                 hypothesis.x0_values)
        assert dummy_hypothesis.x0_indices == hypothesis.x0_indices
        assert numpy.array_equal(dummy_hypothesis.e_values,
                                 hypothesis.e_values)
        assert dummy_hypothesis.e_indices == hypothesis.e_indices
        assert numpy.array_equal(dummy_hypothesis.w_values,
                                 hypothesis.w_values)
        assert dummy_hypothesis.w_indices == hypothesis.w_indices
        assert numpy.array_equal(dummy_hypothesis.lsa_propagation_indices,
                                 hypothesis.lsa_propagation_indices)
        if len(dummy_hypothesis.lsa_propagation_indices) == 0:
            assert numpy.array_equal([0, 0, 0],
                                     hypothesis.lsa_propagation_strengths)
        else:
            assert numpy.array_equal(
                dummy_hypothesis.lsa_propagation_strengths,
                hypothesis.lsa_propagation_strengths)