コード例 #1
0
    def get_gemm_feature(target):
        k = tvm.reduce_axis((0, N), 'k')
        A = tvm.placeholder((N, N), name='A')
        B = tvm.placeholder((N, N), name='B')
        C = tvm.compute(A.shape,
                        lambda y, x: tvm.sum(A[y, k] * B[k, x], axis=k),
                        name='C')

        s = tvm.create_schedule(C.op)

        y, x = s[C].op.axis
        axes = list(s[C].tile(y, x, 8, 8)) + [k]
        perm = np.random.permutation(5)
        axes = [axes[x] for x in perm]
        s[C].reorder(*axes)

        if "gpu" in target.keys:
            pick = []
            # filter out reduction axis
            for i in range(len(perm)):
                if perm[i] != 4:
                    pick.append(axes[i])
            s[C].bind(pick[0], tvm.thread_axis("blockIdx.x"))
            s[C].bind(pick[1], tvm.thread_axis("vthread"))
            s[C].bind(pick[2], tvm.thread_axis("threadIdx.y"))

        with target:
            feas = feature.get_itervar_feature(s, [A, B, C])
            feas = feature.flatten_itervar_feature(feas)
        return feas
コード例 #2
0
    def get_gemm_feature(target):
        k = tvm.reduce_axis((0, N), 'k')
        A = tvm.placeholder((N, N), name='A')
        B = tvm.placeholder((N, N), name='B')
        C = tvm.compute(A.shape, lambda y, x: tvm.sum(A[y, k] * B[k, x], axis=k),
                        name='C')

        s = tvm.create_schedule(C.op)

        y, x = s[C].op.axis
        axes = list(s[C].tile(y, x, 8, 8)) + [k]
        perm = np.random.permutation(5)
        axes = [axes[x] for x in perm]
        s[C].reorder(*axes)

        if "gpu" in target.keys:
            pick = []
            # filter out reduction axis
            for i in range(len(perm)):
                if perm[i] != 4:
                    pick.append(axes[i])
            s[C].bind(pick[0], tvm.thread_axis("blockIdx.x"))
            s[C].bind(pick[1], tvm.thread_axis("vthread"))
            s[C].bind(pick[2], tvm.thread_axis("threadIdx.y"))

        with target:
            feas = feature.get_itervar_feature(s, [A, B, C])
            feas = feature.flatten_itervar_feature(feas)
        return feas
コード例 #3
0
def test_iter_feature_gemm():
    N = 128

    k = te.reduce_axis((0, N), "k")
    A = te.placeholder((N, N), name="A")
    B = te.placeholder((N, N), name="B")
    C = te.compute(A.shape, lambda y, x: te.sum(A[y, k] * B[k, x], axis=k), name="C")

    s = te.create_schedule(C.op)

    feas = feature.get_itervar_feature(s, [A, B, C], take_log=False)

    expected = [
        {
            "_attr_": [128, 1, 128, 2097152, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
            "A_0": [128, -1, 16384, 128, 0, 0],
            "B_0": [0, -1, 16384, 128, 0, 0],
            "C_0": [128, -1, 16384, 128, 0, 0],
            "C_1": [128, -1, 16384, 128, 0, 0],
        },
        {
            "_attr_": [128, 2, 16384, 16384, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
            "A_0": [0, -1, 128, 128, 0, 0],
            "B_0": [1, -1, 16384, 1, 0, 0],
            "C_0": [1, -1, 128, 128, 0, 0],
            "C_1": [1, -1, 128, 128, 0, 0],
        },
        {
            "_attr_": [128, 3, 2097152, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
            "A_0": [1, -1, 128, 1, 0, 0],
            "B_0": [128, -1, 128, 1, 0, 0],
            "C_1": [0, -1, 1, 128, 0, 0],
            "C_2": [0, -1, 1, 128, 0, 0],
        },
    ]

    for ans, row in zip(expected, feas):
        for pair in row:
            if pair[0] not in ans:
                continue
            assert ans[pair[0]] == pair[1:], "%s: %s vs %s" % (pair[0], ans[pair[0]], pair[1:])
コード例 #4
0
def test_iter_feature_gemm():
    N = 128

    k = tvm.reduce_axis((0, N), 'k')
    A = tvm.placeholder((N, N), name='A')
    B = tvm.placeholder((N, N), name='B')
    C = tvm.compute(A.shape,
                    lambda y, x: tvm.sum(A[y, k] * B[k, x], axis=k),
                    name='C')

    s = tvm.create_schedule(C.op)

    feas = feature.get_itervar_feature(s, [A, B, C], take_log=False)

    expected = [{
        '_attr_': [128, 1, 128, 2097152, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
        'A_0': [128, -1, 16384, 128, 0, 0],
        'B_0': [0, -1, 16384, 128, 0, 0],
        'C_0': [128, -1, 16384, 128, 0, 0],
        'C_1': [128, -1, 16384, 128, 0, 0],
    }, {
        '_attr_': [128, 2, 16384, 16384, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
        'A_0': [0, -1, 128, 128, 0, 0],
        'B_0': [1, -1, 16384, 1, 0, 0],
        'C_0': [1, -1, 128, 128, 0, 0],
        'C_1': [1, -1, 128, 128, 0, 0],
    }, {
        '_attr_': [128, 3, 2097152, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
        'A_0': [1, -1, 128, 1, 0, 0],
        'B_0': [128, -1, 128, 1, 0, 0],
        'C_1': [0, -1, 1, 128, 0, 0],
        'C_2': [0, -1, 1, 128, 0, 0],
    }]

    for ans, row in zip(expected, feas):
        for pair in row:
            if pair[0] not in ans:
                continue
            assert ans[pair[0]] == pair[1:], "%s: %s vs %s" % (
                pair[0], ans[pair[0]], pair[1:])
コード例 #5
0
def test_iter_feature_gemm():
    N = 128

    k = tvm.reduce_axis((0, N), 'k')
    A = tvm.placeholder((N, N), name='A')
    B = tvm.placeholder((N, N), name='B')
    C = tvm.compute(
        A.shape,
        lambda y, x: tvm.sum(A[y, k] * B[k, x], axis=k),
        name='C')

    s = tvm.create_schedule(C.op)

    feas = feature.get_itervar_feature(s, [A, B, C], take_log=False)

    expected = [
        {
            '_attr_': [128, 1, 128, 2097152, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
            'A_0': [128, -1, 16384, 128, 0, 0], 'B_0': [0, -1, 16384, 128, 0, 0],
            'C_0': [128, -1, 16384, 128, 0, 0], 'C_1': [128, -1, 16384, 128, 0, 0],
        },
        {
            '_attr_': [128, 2, 16384, 16384, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
            'A_0': [0, -1, 128, 128, 0, 0], 'B_0': [1, -1, 16384, 1, 0, 0],
            'C_0': [1, -1, 128, 128, 0, 0], 'C_1': [1, -1, 128, 128, 0, 0],
        },
        {
            '_attr_': [128, 3, 2097152, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
            'A_0': [1, -1, 128, 1, 0, 0], 'B_0': [128, -1, 128, 1, 0, 0],
            'C_1': [0, -1, 1, 128, 0, 0], 'C_2':  [0, -1, 1, 128, 0, 0],
        }
    ]

    for ans, row in zip(expected, feas):
        for pair in row:
            if pair[0] not in ans:
                continue
            assert ans[pair[0]] == pair[1:], "%s: %s vs %s" % (pair[0], ans[pair[0]], pair[1:])
コード例 #6
0
ファイル: Passes.py プロジェクト: dpankratz/CMPUT500Project
 def print_info(self, index):
     sch, args = self.instantiate_task(index)
     print(self.space.get(index))
     print(feature.get_itervar_feature(sch, args))
     print(feature.get_itervar_feature_flatten(sch, args))