コード例 #1
0
    def __init__(self,
                 opt_level=2,
                 fallback_device=_nd.cpu(),
                 required_pass=None,
                 disabled_pass=None,
                 trace=None):
        if isinstance(fallback_device, str):
            fallback_device = _nd.context(fallback_device).device_type
        elif isinstance(fallback_device, TVMContext):
            fallback_device = fallback_device.device_type
        if not isinstance(fallback_device, int):
            raise TypeError("fallback_device is expected to be the type of " +
                            "int/str/TVMContext.")

        required = list(required_pass) if required_pass else []
        if not isinstance(required, (list, tuple)):
            raise TypeError("required_pass is expected to be the type of " +
                            "list/tuple/set.")

        disabled = list(disabled_pass) if disabled_pass else []
        if not isinstance(disabled, (list, tuple)):
            raise TypeError("disabled_pass is expected to be the type of " +
                            "list/tuple/set.")

        self.__init_handle_by_constructor__(_ffi_transform_api.PassContext, opt_level,
                                            fallback_device, required,
                                            disabled, trace)
コード例 #2
0
    def timed_func(inp, build_res):
        tic = time.time()
        error_no = 0
        error_msg = None
        try:
            func = module.load_module(build_res.filename)
            ctx = ndarray.context(str(inp.task.target), 0)
            # Limitation:
            # We can not get PackFunction directly in the remote mode as it is wrapped
            # under the std::function. We could lift the restriction later once we fold
            # the PackedFunc as an object. Currently, we pass function name to work
            # around it.
            f_prepare = "cache_flush_cpu_non_first_arg" if enable_cpu_cache_flush else ""
            time_f = func.time_evaluator(
                func.entry_name,
                ctx,
                number=number,
                repeat=repeat,
                min_repeat_ms=min_repeat_ms,
                f_preproc=f_prepare,
            )
        # pylint: disable=broad-except
        except Exception:
            costs = (max_float, )
            error_no = MeasureErrorNo.COMPILE_DEVICE
            error_msg = make_error_msg()

        if error_no == 0:
            try:
                args = [
                    ndarray.empty(get_const_tuple(x.shape), x.dtype, ctx)
                    for x in build_res.args
                ]
                random_fill = tvm.get_global_func(
                    "tvm.contrib.random.random_fill", True)
                assert random_fill, "Please make sure USE_RANDOM is ON in the config.cmake"
                for arg in args:
                    random_fill(arg)
                ctx.sync()
                costs = time_f(*args).results
            # pylint: disable=broad-except
            except Exception:
                costs = (max_float, )
                error_no = MeasureErrorNo.RUNTIME_DEVICE
                error_msg = make_error_msg()

        shutil.rmtree(os.path.dirname(build_res.filename))
        toc = time.time()
        time.sleep(cooldown_interval)

        if verbose >= 1:
            if error_no == MeasureErrorNo.NO_ERROR:
                print("*", end="")
            else:
                print("*E", end="")  # Run error
        return costs, error_no, error_msg, toc - tic + build_res.time_cost, toc
コード例 #3
0
def device_copy(data, src_dev, dst_dev):
    """Copy data from the source device to the destination device. This
    operator helps data transferring between difference contexts for
    heterogeneous execution.

    Parameters
    ----------
    data : tvm.relay.Expr
        The tensor to be copied.

    src_dev : Union[:py:class:`TVMContext`, str]
        The source device where the data is copied from.

    dst_dev : Union[:py:class:`TVMContext`, str]
        The destination device where the data is copied to.

    Returns
    -------
    result : tvm.relay.Expr
        The copied result.
    """
    if isinstance(src_dev, _TVMContext):
        src_dev = src_dev.device_type
    elif isinstance(src_dev, str):
        src_dev = _nd.context(src_dev).device_type
    else:
        raise ValueError(
            "src_dev is expected to be the type of TVMContext or "
            "str, but received %s" % (type(src_dev))
        )

    if isinstance(dst_dev, _TVMContext):
        dst_dev = dst_dev.device_type
    elif isinstance(dst_dev, str):
        dst_dev = _nd.context(dst_dev).device_type
    else:
        raise ValueError(
            "dst_dev is expected to be the type of TVMContext or "
            "str, but received %s" % (type(dst_dev))
        )
    return _make.device_copy(data, src_dev, dst_dev)
コード例 #4
0
    def timed_func(inp, build_res):
        tic = time.time()
        error_no = 0
        error_msg = None
        try:
            func = module.load_module(build_res.filename)
            ctx = ndarray.context(str(inp.task.target), 0)
            # TODO(FrozenGene): Add cpu cache flush to this function.
            time_f = func.time_evaluator(func.entry_name,
                                         ctx,
                                         number=number,
                                         repeat=repeat,
                                         min_repeat_ms=min_repeat_ms)
        # pylint: disable=broad-except
        except Exception:
            costs = (max_float, )
            error_no = MeasureErrorNo.COMPILE_DEVICE
            error_msg = make_error_msg()

        if error_no == 0:
            try:
                # TODO(FrozenGene): Update to ndarray.non-empty.
                args = [
                    ndarray.empty(get_const_tuple(x.shape), x.dtype, ctx)
                    for x in build_res.args
                ]
                ctx.sync()
                costs = time_f(*args).results
            # pylint: disable=broad-except
            except Exception:
                costs = (max_float, )
                error_no = MeasureErrorNo.RUNTIME_DEVICE
                error_msg = make_error_msg()

        shutil.rmtree(os.path.dirname(build_res.filename))
        toc = time.time()
        time.sleep(cooldown_interval)

        if verbose >= 1:
            if error_no == MeasureErrorNo.NO_ERROR:
                print("*", end="")
            else:
                print("*E", end="")  # Run error
        return costs, error_no, error_msg, toc - tic + build_res.time_cost, toc
コード例 #5
0
ファイル: client.py プロジェクト: chisuhua/tvm-ppflow
    def context(self, dev_type, dev_id=0):
        """Construct a remote context.

        Parameters
        ----------
        dev_type: int or str

        dev_id: int, optional

        Returns
        -------
        ctx: TVMContext
            The corresponding encoded remote context.
        """
        ctx = nd.context(dev_type, dev_id)
        encode = (self._tbl_index + 1) * base.RPC_SESS_MASK
        ctx.device_type += encode
        ctx._rpc_sess = self
        return ctx
コード例 #6
0
def on_device(data, device):
    """Annotate an expression with a certain device type.

    Parameters
    ----------
    data : tvm.relay.Expr
        The expression to be annotated.

    device : Union[:py:class:`TVMContext`, str]
        The device type to annotate.

    Returns
    -------
    result : tvm.relay.Expr
        The annotated expression.
    """
    if isinstance(device, _TVMContext):
        device = device.device_type
    elif isinstance(device, str):
        device = _nd.context(device).device_type
    else:
        raise ValueError("device is expected to be the type of TVMContext or "
                         "str, but received %s" % (type(device)))
    return _make.on_device(data, device)
コード例 #7
0
def build(inputs,
          args=None,
          target=None,
          target_host=None,
          name="default_function",
          binds=None):
    """Build a function with arguments as signature. Code will be generated
    for devices coupled with target information.

    Parameters
    ----------
    inputs : tvm.te.Schedule, IRModule, or dict of target to IRModule
        The schedule to be built

    args : list of Buffer or Tensor or Var, optional
        The argument lists to the function.

    target : str or :any:`tvm.target.Target`, optional
        The target and option of the compilation.

    target_host : str or :any:`tvm.target.Target` optional
        Host compilation target, if target is device.
        When TVM compiles device specific program such as CUDA,
        we also need host(CPU) side code to interact with the driver
        setup the dimensions and parameters correctly.
        target_host is used to specify the host side codegen target.
        By default, llvm is used if it is enabled,
        otherwise a stackvm intepreter is used.

    name : str, optional
        The name of result function.

    binds : dict, optional
        Dictionary that maps the binding of symbolic buffer to Tensor.
        By default, a new buffer is created for each tensor in the argument.

    Returns
    -------
    ret : tvm.module
        A module that combines both host and device code.

    Examples
    ________
    There are two typical example uses of this function depending on the type
    of the argument `inputs`:
    1. it is an IRModule.

    .. code-block:: python

        n = 2
        A = te.placeholder((n,), name='A')
        B = te.placeholder((n,), name='B')
        C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name='C')
        s = tvm.te.create_schedule(C.op)
        m = tvm.lower(s, [A, B, C], name="test_add")
        rt_mod = tvm.build(m, target="llvm")

    2. it is a dict of compilation target to IRModule.

    .. code-block:: python

        n = 2
        A = te.placeholder((n,), name='A')
        B = te.placeholder((n,), name='B')
        C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name='C')
        s1 = tvm.te.create_schedule(C.op)
        with tvm.target.cuda() as cuda_tgt:
          s2 = topi.cuda.schedule_injective(cuda_tgt, [C])
          m1 = tvm.lower(s1, [A, B, C], name="test_add1")
          m2 = tvm.lower(s2, [A, B, C], name="test_add2")
          rt_mod = tvm.build({"llvm": m1, "cuda": m2}, target_host="llvm")

    Note
    ----
    See the note on :any:`tvm.target` on target string format.
    """
    if isinstance(inputs, schedule.Schedule):
        if args is None:
            raise ValueError("args must be given for build from schedule")
        input_mod = lower(inputs, args, name=name, binds=binds)
    elif isinstance(inputs, (list, tuple, container.Array)):
        merged_mod = tvm.IRModule({})
        for x in inputs:
            merged_mod.update(x)
        input_mod = merged_mod
    elif isinstance(inputs, tvm.IRModule):
        input_mod = inputs
    elif not isinstance(inputs, (dict, container.Map)):
        raise ValueError(
            "inputs must be Schedule, IRModule or dict of target to IRModule")

    if not isinstance(inputs, (dict, container.Map)):
        target = _target.Target.current() if target is None else target
        target = target if target else "llvm"
        target_input_mod = {target: input_mod}
    else:
        target_input_mod = inputs

    for tar, mod in target_input_mod.items():
        if not isinstance(tar, (str, _target.Target)):
            raise ValueError("The key of inputs must be str or "
                             "_target.Target when inputs is dict.")
        if not isinstance(mod, tvm.IRModule):
            raise ValueError("inputs must be Schedule, IRModule,"
                             "or dict of str to IRModule.")

    if not target_host:
        for tar, _ in target_input_mod.items():
            tar = _target.create(tar)
            device_type = ndarray.context(tar.target_name, 0).device_type
            if device_type == ndarray.cpu(0).device_type:
                target_host = tar
                break
    if not target_host:
        target_host = "llvm" if tvm.runtime.enabled("llvm") else "stackvm"

    mod_host_all = tvm.IRModule({})

    device_modules = []
    for tar, input_mod in target_input_mod.items():
        mod_host, mdev = _build_for_device(input_mod, tar, target_host)
        mod_host_all.update(mod_host)
        device_modules.append(mdev)

    # Generate a unified host module.
    rt_mod_host = codegen.build_module(mod_host_all, target_host)

    # Import all modules.
    for mdev in device_modules:
        if mdev:
            rt_mod_host.import_module(mdev)
    return rt_mod_host
コード例 #8
0
def _build_for_device(input_mod, target, target_host):
    """Build the lowered functions for a device with the given compilation
    target.

    Parameters
    ----------
    input_mod : IRModule
        The schedule to be built.

    target : str or :any:`tvm.target.Target`
        The target and option of the compilation.

    target_host : str or :any:`tvm.target.Target`
        The host compilation target.

    Returns
    -------
    fhost : IRModule
        The host IRModule.

    mdev : tvm.module
        A module that contains device code.
    """
    target = _target.create(target)
    target_host = _target.create(target_host)
    device_type = ndarray.context(target.target_name, 0).device_type

    mod_mixed = input_mod
    mod_mixed = tvm.tir.transform.Apply(
        lambda f: f.with_attr("target", target))(mod_mixed)

    opt_mixed = [tvm.tir.transform.VerifyMemory()]
    if len(mod_mixed.functions) == 1:
        opt_mixed += [
            tvm.tir.transform.Apply(
                lambda f: f.with_attr("tir.is_entry_func", True))
        ]
    if BuildConfig.current().detect_global_barrier:
        opt_mixed += [tvm.tir.transform.ThreadSync("global")]
    opt_mixed += [
        tvm.tir.transform.ThreadSync("shared"),
        tvm.tir.transform.ThreadSync("warp"),
        tvm.tir.transform.InferFragment(),
        tvm.tir.transform.LowerThreadAllreduce(),
        tvm.tir.transform.MakePackedAPI(),
        tvm.tir.transform.SplitHostDevice()
    ]
    mod_mixed = tvm.transform.Sequential(opt_mixed)(mod_mixed)

    # device optimizations
    opt_device = tvm.transform.Sequential([
        tvm.tir.transform.Filter(
            lambda f: "calling_conv" in f.attrs and f.attrs[
                "calling_conv"].value == CallingConv.DEVICE_KERNEL_LAUNCH),
        tvm.tir.transform.LowerWarpMemory(),
        tvm.tir.transform.Simplify(),
        tvm.tir.transform.LowerDeviceStorageAccessInfo(),
        tvm.tir.transform.LowerIntrin()
    ])
    mod_dev = opt_device(mod_mixed)

    # host optimizations
    opt_host = tvm.transform.Sequential([
        tvm.tir.transform.Filter(
            lambda f: "calling_conv" not in f.attrs or f.attrs[
                "calling_conv"].value != CallingConv.DEVICE_KERNEL_LAUNCH),
        tvm.tir.transform.Apply(lambda f: f.with_attr("target", target)),
        tvm.tir.transform.LowerTVMBuiltin(),
        tvm.tir.transform.LowerDeviceStorageAccessInfo(),
        tvm.tir.transform.LowerIntrin(),
        tvm.tir.transform.CombineContextCall()
    ])
    mod_host = opt_host(mod_mixed)

    if device_type == ndarray.cpu(0).device_type and target_host == target:
        assert len(mod_dev.functions) == 0
    if "gpu" in target.keys and len(mod_dev.functions) == 0:
        warnings.warn(
            "Specified target %s, but cannot find device code, did you do "
            "bind?" % target)

    rt_mod_dev = codegen.build_module(
        mod_dev, target) if len(mod_dev.functions) != 0 else None
    return mod_host, rt_mod_dev
コード例 #9
0
def _build_for_device(flist, target, target_host):
    """Build the lowered functions for a device with the given compilation
    target.

    Parameters
    ----------
    flist : list of LoweredFunc
        The schedule to be built.

    target : str or :any:`tvm.target.Target`
        The target and option of the compilation.

    target_host : str or :any:`tvm.target.Target`
        The host compilation target.

    Returns
    -------
    fhost : list of LoweredFunc
        A list of lowered functions for the host.

    mdev : tvm.module
        A module that contains device code.
    """
    target = _target.create(target)
    target_host = _target.create(target_host)
    device_type = ndarray.context(target.target_name, 0).device_type

    for func in flist:
        if not ir_pass.VerifyMemory(func, device_type):
            raise ValueError(
                "Direct host side access to device memory is detected in %s. "
                "Did you forget to bind?" % func.name)

    mod_mixed = tvm.testing.LoweredFuncsToIRModule(flist)
    opt_mixed = [tvm.tir.transform.Apply(lambda f: f.with_attr("target", target))]
    if BuildConfig.current().detect_global_barrier:
        opt_mixed += [tvm.tir.transform.ThreadSync("global")]
    opt_mixed += [tvm.tir.transform.ThreadSync("shared"),
                  tvm.tir.transform.ThreadSync("warp"),
                  tvm.tir.transform.InferFragment(),
                  tvm.tir.transform.LowerThreadAllreduce(),
                  tvm.tir.transform.BindDeviceType(),
                  tvm.tir.transform.SplitHostDevice()]
    mod_mixed = tvm.ir.transform.Sequential(opt_mixed)(mod_mixed)


    # device optimizations
    opt_device = tvm.ir.transform.Sequential(
        [tvm.tir.transform.Filter(
            lambda f: "calling_conv" in f.attrs and
            f.attrs["calling_conv"].value == CallingConv.DEVICE_KERNEL_LAUNCH),
         tvm.tir.transform.LowerWarpMemory(),
         tvm.tir.transform.LowerDeviceStorageAccessInfo(),
         tvm.tir.transform.LowerIntrin()])
    mod_dev = opt_device(mod_mixed)

    # host optimizations
    opt_host = tvm.ir.transform.Sequential(
        [tvm.tir.transform.Filter(
            lambda f: "calling_conv" not in f.attrs or
            f.attrs["calling_conv"].value != CallingConv.DEVICE_KERNEL_LAUNCH),
         tvm.tir.transform.Apply(lambda f: f.with_attr("target", target)),
         tvm.tir.transform.LowerTVMBuiltin(),
         tvm.tir.transform.LowerDeviceStorageAccessInfo(),
         tvm.tir.transform.LowerIntrin(),
         tvm.tir.transform.CombineContextCall()])
    mod_host = opt_host(mod_mixed)

    if device_type == ndarray.cpu(0).device_type and target_host == target:
        assert len(mod_dev.functions) == 0
    if "gpu" in target.keys and len(mod_dev.functions) == 0:
        warnings.warn(
            "Specified target %s, but cannot find device code, did you do "
            "bind?" % target)

    rt_mod_dev = codegen.build_module(mod_dev, target) if len(mod_dev.functions) != 0 else None
    return mod_host, rt_mod_dev
コード例 #10
0
ファイル: measure.py プロジェクト: PENGUINLIONG/tvm-1
def _timed_eval_func(
    inp_serialized,
    build_res,
    number,
    repeat,
    min_repeat_ms,
    cooldown_interval,
    enable_cpu_cache_flush,
    verbose,
):
    # pylint: disable=import-outside-toplevel
    from .search_task import get_task_input_buffer  # lazily import to avoid recursive dependency

    inp = MeasureInput.deserialize(inp_serialized)
    task_input_names = inp.task.task_input_names
    tic = time.time()
    error_no = 0
    error_msg = None
    try:
        func = module.load_module(build_res.filename)
        ctx = ndarray.context(str(inp.task.target), 0)
        # Limitation:
        # We can not get PackFunction directly in the remote mode as it is wrapped
        # under the std::function. We could lift the restriction later once we fold
        # the PackedFunc as an object. Currently, we pass function name to work
        # around it.
        f_prepare = "cache_flush_cpu_non_first_arg" if enable_cpu_cache_flush else ""
        time_f = func.time_evaluator(
            func.entry_name,
            ctx,
            number=number,
            repeat=repeat,
            min_repeat_ms=min_repeat_ms,
            f_preproc=f_prepare,
        )
    # pylint: disable=broad-except
    except Exception:
        costs = (MAX_FLOAT, )
        error_no = MeasureErrorNo.COMPILE_DEVICE
        error_msg = make_traceback_info()

    if error_no == 0:
        try:
            random_fill = tvm.get_global_func("tvm.contrib.random.random_fill",
                                              True)
            assert random_fill, "Please make sure USE_RANDOM is ON in the config.cmake"

            tensor_input_map = _prepare_input_map(
                build_res.args) if task_input_names else {}
            args = []
            task_inputs_count = 0
            for arg in build_res.args:
                if arg in tensor_input_map:
                    tensor_name = tensor_input_map[arg]
                    if tensor_name in task_input_names:
                        args.append(
                            get_task_input_buffer(inp.task.workload_key,
                                                  tensor_name))
                        task_inputs_count += 1
                    else:
                        raise ValueError(
                            "%s not found in task_inputs, " % (tensor_name) +
                            "should provide with `SearchTask(..., task_inputs={...})`"
                        )
                else:
                    empty_array = ndarray.empty(get_const_tuple(arg.shape),
                                                arg.dtype, ctx)
                    random_fill(empty_array)
                    args.append(empty_array)
            if task_inputs_count != len(task_input_names):
                logger.warning(
                    "task_inputs not fully matched, check if there's any unexpected error"
                )
            ctx.sync()
            costs = time_f(*args).results
        # pylint: disable=broad-except
        except Exception:
            costs = (MAX_FLOAT, )
            error_no = MeasureErrorNo.RUNTIME_DEVICE
            error_msg = make_traceback_info()

    shutil.rmtree(os.path.dirname(build_res.filename))
    toc = time.time()
    time.sleep(cooldown_interval)

    if verbose >= 1:
        if error_no == MeasureErrorNo.NO_ERROR:
            print("*", end="", flush=True)
        else:
            print("*E", end="", flush=True)  # Run error
    return costs, error_no, error_msg, toc - tic + build_res.time_cost, toc
コード例 #11
0
def _build_for_device(flist, target, target_host):
    """Build the lowered functions for a device with the given compilation
    target.

    Parameters
    ----------
    flist : list of LoweredFunc
        The schedule to be built.

    target : str or :any:`tvm.target.Target`
        The target and option of the compilation.

    target_host : str or :any:`tvm.target.Target`
        The host compilation target.

    Returns
    -------
    fhost : list of LoweredFunc
        A list of lowered functions for the host.

    mdev : tvm.module
        A module that contains device code.
    """
    target = _target.create(target)
    device_type = ndarray.context(target.target_name, 0).device_type
    fhost = []
    fdevice = []
    for func in flist:
        if not ir_pass.VerifyMemory(func, device_type):
            raise ValueError(
                "Direct host side access to device memory is detected in %s. "
                "Did you forget to bind?" % func.name)
        if func.func_type == LoweredFunc.MixedFunc:
            if current_build_config().detect_global_barrier:
                func = ir_pass.ThreadSync(func, "global")
            func = ir_pass.ThreadSync(func, "shared")
            func = ir_pass.ThreadSync(func, "warp")
            func = ir_pass.InferFragment(func)
            warp_size = target.thread_warp_size
            func = ir_pass.LowerThreadAllreduce(func, warp_size)
            fsplits = list(ir_pass.SplitHostDevice(func))
            fhost.append(fsplits[0])
            for x in fsplits[1:]:
                fdevice.append(x)
        elif func.func_type == LoweredFunc.HostFunc:
            fhost.append(func)
        elif func.func_type == LoweredFunc.DeviceFunc:
            fdevice.append(func)
        else:
            raise ValueError("unknown function type %d" % func.func_type)

    for i, func in enumerate(fdevice):
        warp_size = target.thread_warp_size
        fdevice[i] = ir_pass.LowerWarpMemory(func, warp_size)

    if "gpu" in target.keys and not fdevice:
        warnings.warn(
            "Specified target %s, but cannot find device code, did you do "
            "bind?" % target)

    fhost = [ir_pass.BindDeviceType(x, device_type) for x in fhost]
    fhost = [ir_pass.LowerTVMBuiltin(x) for x in fhost]

    if device_type == ndarray.cpu(0).device_type and target_host == target:
        assert not fdevice

    target_host = _target.create(target_host)
    fdevice = [ir_pass.LowerDeviceStorageAccessInfo(x) for x in fdevice]
    fhost = [ir_pass.LowerDeviceStorageAccessInfo(x) for x in fhost]
    fdevice = [ir_pass.LowerIntrin(x, target.target_name) for x in fdevice]
    fhost = [ir_pass.LowerIntrin(x, target_host.target_name) for x in fhost]
    fhost = [ir_pass.CombineContextCall(x) for x in fhost]
    mdev = codegen.build_module(fdevice, str(target)) if fdevice else None

    return fhost, mdev
コード例 #12
0
def _build_for_device(flist, target, target_host):
    """Build the lowered functions for a device with the given compilation
    target.

    Parameters
    ----------
    flist : list of LoweredFunc
        The schedule to be built.

    target : str or :any:`tvm.target.Target`
        The target and option of the compilation.

    target_host : str or :any:`tvm.target.Target`
        The host compilation target.

    Returns
    -------
    fhost : list of LoweredFunc
        A list of lowered functions for the host.

    mdev : tvm.module
        A module that contains device code.
    """
    @tvm.tir.transform.prim_func_pass(opt_level=0)
    class BindTarget:
        def __init__(self, target):
            self.target = target

        # pylint: disable=unused-argument
        def transform_function(self, func, mod, ctx):
            return func.with_attr("target", self.target)

    target = _target.create(target)
    device_type = ndarray.context(target.target_name, 0).device_type
    fhost = []
    fdevice = []
    for func in flist:
        if not ir_pass.VerifyMemory(func, device_type):
            raise ValueError(
                "Direct host side access to device memory is detected in %s. "
                "Did you forget to bind?" % func.name)
        if func.func_type == LoweredFunc.MixedFunc:
            if BuildConfig.current().detect_global_barrier:
                func = ir_pass.ThreadSync(func, "global")
            func = ir_pass.ThreadSync(func, "shared")
            func = ir_pass.ThreadSync(func, "warp")
            func = ir_pass.InferFragment(func)
            warp_size = target.thread_warp_size
            func = ir_pass.LowerThreadAllreduce(func, warp_size)
            fsplits = list(ir_pass.SplitHostDevice(func))
            fhost.append(fsplits[0])
            for x in fsplits[1:]:
                fdevice.append(x)
        elif func.func_type == LoweredFunc.HostFunc:
            fhost.append(func)
        elif func.func_type == LoweredFunc.DeviceFunc:
            fdevice.append(func)
        else:
            raise ValueError("unknown function type %d" % func.func_type)

    if "gpu" in target.keys and not fdevice:
        warnings.warn(
            "Specified target %s, but cannot find device code, did you do "
            "bind?" % target)

    fhost = [ir_pass.BindDeviceType(x, device_type) for x in fhost]

    if device_type == ndarray.cpu(0).device_type and target_host == target:
        assert not fdevice

    target_host = _target.create(target_host)

    # device optimizations
    mod_dev = tvm.testing.LoweredFuncsToIRModule(fdevice)
    opt_device = tvm.ir.transform.Sequential(
        [BindTarget(target),
         tvm.tir.transform.LowerWarpMemory(),
         tvm.tir.transform.LowerDeviceStorageAccessInfo(),
         tvm.tir.transform.LowerIntrin()])
    mod_dev = opt_device(mod_dev)

    # host optimizations
    mod_host = tvm.testing.LoweredFuncsToIRModule(fhost)
    opt_host = tvm.ir.transform.Sequential(
        [BindTarget(target_host),
         tvm.tir.transform.LowerTVMBuiltin(),
         tvm.tir.transform.LowerDeviceStorageAccessInfo(),
         tvm.tir.transform.LowerIntrin(),
         tvm.tir.transform.CombineContextCall()])
    mod_host = opt_host(mod_host)

    rt_mod_dev = codegen.build_module(mod_dev, target) if fdevice else None
    return mod_host, rt_mod_dev