コード例 #1
0
def test_broadcast_binary_op(lhs_shape, rhs_shape, typ="add"):
    global TASK
    TASK = (
        "bcast_binary_"
        + typ
        + "_lhs"
        + "_".join([str(ele) for ele in lhs_shape])
        + "rhs"
        + "_".join([str(ele) for ele in rhs_shape])
    )
    A = te.placeholder(shape=lhs_shape, name="A")
    B = te.placeholder(shape=rhs_shape, name="B")
    if typ == "add":
        C = topi.broadcast_add(A, B)
    elif typ == "sub":
        C = topi.broadcast_sub(A, B)
    elif typ == "div":
        C = topi.broadcast_div(A, B)
    elif typ == "mul":
        C = topi.broadcast_mul(A, B)
    elif typ == "maximum":
        C = topi.broadcast_maximum(A, B)
    elif typ == "minimum":
        C = topi.broadcast_minimum(A, B)
    else:
        raise NotImplementedError
    s = topi.cuda.schedule_broadcast(C)
    fcuda = tvm.build(s, [A, B, C], "cuda", name="broadcast_binary" + "_" + typ)

    lhs_npy = np.random.uniform(size=lhs_shape).astype(A.dtype)
    rhs_npy = np.random.uniform(size=rhs_shape).astype(A.dtype)
    if typ == "add":
        out_npy = lhs_npy + rhs_npy
    elif typ == "sub":
        out_npy = lhs_npy - rhs_npy
    elif typ == "div":
        rhs_npy = np.abs(rhs_npy) + 0.001
        out_npy = lhs_npy / rhs_npy
    elif typ == "mul":
        out_npy = lhs_npy * rhs_npy
    elif typ == "maximum":
        out_npy = np.maximum(lhs_npy, rhs_npy)
    elif typ == "minimum":
        out_npy = np.minimum(lhs_npy, rhs_npy)
    lhs_nd = tvm.nd.array(lhs_npy, tvm.cuda())
    rhs_nd = tvm.nd.array(rhs_npy, tvm.cuda())
    out_nd = tvm.nd.array(np.empty(out_npy.shape).astype(B.dtype), tvm.cuda())
    for _ in range(2):
        fcuda(lhs_nd, rhs_nd, out_nd)
    tvm.testing.assert_allclose(out_nd.numpy(), out_npy)
コード例 #2
0
ファイル: test_mxnet_bridge.py プロジェクト: jiajuns/tvm
def mxnet_check():
    """This is a simple test function for MXNet bridge

    It is not included as pytests, because of its dependency on mxnet

    User can directly run this script to verify correctness.
    """
    import mxnet as mx
    from tvm import topi
    import tvm
    from tvm import te
    import numpy as np
    from tvm.contrib.mxnet import to_mxnet_func

    # build a TVM function through topi
    n = 20
    shape = (20, )
    scale = te.var("scale", dtype="float32")
    x = te.placeholder(shape)
    y = te.placeholder(shape)
    z = topi.broadcast_add(x, y)
    zz = te.compute(shape, lambda *i: z(*i) * scale)

    target = tvm.target.cuda()

    # build the function
    with target:
        s = topi.generic.schedule_injective(zz)
        f = tvm.build(s, [x, y, zz, scale])

    # get a mxnet version
    mxf = to_mxnet_func(f, const_loc=[0, 1])

    ctx = mx.gpu(0)
    xx = mx.nd.uniform(shape=shape, ctx=ctx)
    yy = mx.nd.uniform(shape=shape, ctx=ctx)
    zz = mx.nd.empty(shape=shape, ctx=ctx)

    # invoke myf: this runs in mxnet engine
    mxf(xx, yy, zz, 10.0)
    mxf(xx, yy, zz, 10.0)

    tvm.testing.assert_allclose(zz.asnumpy(),
                                (xx.asnumpy() + yy.asnumpy()) * 10)