path_load_weights = config["test"]["path_load_weights"] output_encoder_size = [hidden_size for i in range(n_encoders)] attention_size = [attention_size for i in range(n_encoders)] n_heads = [n_heads for i in range(n_encoders)] # Model definition # twilbert_model = BertModel(max_len, vocab_size, embedding_size, output_encoder_size, attention_size, n_heads, cross_sharing, factorize_embeddings, input_dropout, output_dropout, rop_n_hidden, rop_hidden_size, None, None, pkm, pkm_params, input_length=None, use_rop=use_rop) twilbert_model.build() model = twilbert_model.model twilbert_model.compile(model) twilbert_model.load(model, path_load_weights)
(batch_size, collapse_mode, lr)) h_test_res[(batch_size, collapse_mode, lr)] = {} h_dev_res[(batch_size, collapse_mode, lr)] = {} for it in range(runs): K.clear_session() print("Run: %d" % it) # Load TWilBert model # twilbert_model = BertModel(max_len, vocab_size, embedding_size, output_encoder_size, attention_size, n_heads, cross_sharing, factorize_embeddings, input_dropout, output_dropout, rop_n_hidden, rop_hidden_size, optimizer, accum_iters, pkm, pkm_params, input_length=None, use_rop=use_rop) twilbert_model.build() model = twilbert_model.model pretrained_model = twilbert_model.pretrained_model twilbert_model.compile(model) model.load_weights(pretrained_model_weights)
output_encoder_size = [hidden_size for i in range(n_encoders)] attention_size = [attention_size for i in range(n_encoders)] n_heads = [n_heads for i in range(n_encoders)] # Model definition # twilbert_model = BertModel(max_len, vocab_size, embedding_size, output_encoder_size, attention_size, n_heads, cross_sharing, factorize_embeddings, input_dropout, output_dropout, rop_n_hidden, rop_hidden_size, optimizer, accum_iters, pkm, pkm_params, initializer_range, gpu, multi_gpu, n_gpus, use_rop=use_rop) twilbert_model.build() model = twilbert_model.model twilbert_model.compile(model)