# -*- coding: utf-8 -*- """ Created on Sun Nov 20 20:46:26 2016 @author: ZJun """ from twitter_function import Import_Obj, GenerateDate, hinton df_flu_related_twitter_in_place_loc = Import_Obj( './DF_Result/df_flu_related_twitter_in_place_loc') df_twitter_in_place_loc = Import_Obj('./DF_Result/df_twitter_in_place_loc') df_move_destination_in_place_loc = Import_Obj( './DF_Result/df_move_destination_in_place_loc') df_flu_related_move_destination_in_place_loc = Import_Obj( './DF_Result/df_flu_related_move_destination_in_place_loc') df_real_flu = Import_Obj('./DF_Result/df_real_flu') df_where_to_where = Import_Obj('./DF_Result/df_where_to_where') df_flu_where_to_where = Import_Obj('./DF_Result/df_flu_where_to_where') def GetTransferProbability(df_where_to_where, df_twitter_in_place_loc): all_where_to_where = df_where_to_where.values[0] * 0 for w2w in df_where_to_where.values: all_where_to_where += w2w # all_where_to_where i to j [i,j] num_all = df_twitter_in_place_loc.sum(0)
# -*- coding: utf-8 -*- """ Created on Wed Nov 23 19:24:30 2016 @author: ZJun """ from twitter_function import Import_Obj, GenerateDate, hinton, GetPartOfTimeSeries population_2015 = dict( zip([ 'Cairns', 'Townsville', 'Mackay', 'Sunshine Coast', 'Brisbane', 'Gold Coast' ], [147993, 180333, 85455, 302122, 2209453, 624918])) df_flu_related_twitter_in_place_loc = Import_Obj( './DF_Result/df_flu_related_twitter_in_place_loc')[population_2015.keys()] df_twitter_in_place_loc = Import_Obj('./DF_Result/df_twitter_in_place_loc')[ population_2015.keys()] df_move_destination_in_place_loc = Import_Obj( './DF_Result/df_move_destination_in_place_loc')[population_2015.keys()] df_flu_related_move_destination_in_place_loc = Import_Obj( './DF_Result/df_flu_related_move_destination_in_place_loc')[ population_2015.keys()] df_real_flu = Import_Obj('./DF_Result/df_real_flu')[population_2015.keys()] df_where_to_where = Import_Obj('./DF_Result/df_where_to_where') df_flu_where_to_where = Import_Obj('./DF_Result/df_flu_where_to_where') actual_days_in_week = Import_Obj('./Data/actual_days_in_week') #a = df_where_to_where[GenerateDate(2015,1,12)] #a.loc[population_2015.keys(),population_2015.keys()]
# -*- coding: utf-8 -*- """ Created on Mon Nov 14 22:01:06 2016 @author: ZJun """ from GetData import LoadData from twitter_function import Import_Obj, GetPartOfTimeSeries, Sort_Dict_key import pandas as pd from GetFactors import GetTwitterInPlaceLoc, GetFluRelatedTwitterInPlaceLoc from GetFactors import GetMoveDestinationInPlaceLoc, GetFluRelatedMoveDestinationInPlaceLoc, GetActuallDayInWeek import matplotlib.pyplot as plt from collections import Counter week_move = Import_Obj('./Data/week_move') week_user_flu_state = Import_Obj('./Data/week_user_flu_state') Queensland_Flu = pd.read_csv('./Data/Queensland2015.csv') from datetime import timedelta def GetRealFlu(Queensland_Flu, location=None): first_week = pd.datetime(2015, 1, 5).date() t = [first_week] if location != None: x = Queensland_Flu[location].values else: x = Queensland_Flu.ix[:, 1:].sum(1).values for i in range(1, len(x)): t.append(first_week + timedelta(i * 7)) ts = pd.Series(x, index=t[:len(x)])
import pandas as pd import numpy as np import matplotlib.pyplot as plt from twitter_function import Import_Obj,GenerateDate,hinton,GetPartOfTimeSeries,Sort_Dict n=6 population_2015 = dict(zip(['Cairns','Townsville','Mackay','Sunshine Coast','Brisbane','Gold Coast'], [147993,180333,85455,302122,2209453,624918])) P = Sort_Dict(population_2015) Places = [i[0] for i in P][:n] df_where_to_where = Import_Obj('./DF_Result/df_where_to_where') actual_days_in_week = Import_Obj('./Data/actual_days_in_week') df_real_flu = Import_Obj('./DF_Result/df_real_flu')[Places] df_twitter_in_place_loc = Import_Obj('./DF_Result/df_twitter_in_place_loc')[Places] TimeRange = [pd.datetime(2015,3,9).date(),pd.datetime(2015,10,12).date()] real_flu_ = GetPartOfTimeSeries(df_real_flu,TimeRange)[Places] Times = real_flu_.index
import pandas as pd import numpy as np import matplotlib.pyplot as plt from twitter_function import Import_Obj, GenerateDate, hinton, GetPartOfTimeSeries, Sort_Dict population_2015 = dict( zip([ 'Cairns', 'Townsville', 'Mackay', 'Sunshine Coast', 'Brisbane', 'Gold Coast' ], [147993, 180333, 85455, 302122, 2209453, 624918])) P = Sort_Dict(population_2015) Places = [i[0] for i in P] df_where_to_where = Import_Obj('./DF_Result/df_where_to_where') actual_days_in_week = Import_Obj('./Data/actual_days_in_week') df_real_flu = Import_Obj('./DF_Result/df_real_flu')[population_2015.keys()] df_twitter_in_place_loc = Import_Obj('./DF_Result/df_twitter_in_place_loc')[ population_2015.keys()] ''' Queensland_Flu = pd.read_csv('./Data/Queensland2015.csv') from datetime import timedelta def GetRealFlu(Queensland_Flu,location=None): first_week = pd.datetime(2015,1,5).date() t = [first_week] if location != None: x = Queensland_Flu[location].values else: x = Queensland_Flu.ix[:,1:].sum(1).values for i in range(1,len(x)):