コード例 #1
0
def solve(cities):
    # print(cities)
    N = len(cities)

    dist = [[0] * N for i in range(N)]
    # print(dist)
    for i in range(N):
        for j in range(i, N):
            dist[i][j] = dist[j][i] = distance(cities[i], cities[j])
    # print(dist)

    # current_city = random.randint(0, N-1)
    # unvisited_cities = []
    # for i in range(N):
    #     if i != current_city:
    #         unvisited_cities.append(i)

    current_city = 0
    unvisited_cities = set(range(1, N))
    # always starting with the zero-th city
    tour = [current_city]

    while unvisited_cities:
        next_city = choose_a_random_neighbor(dist, cities, current_city,
                                             unvisited_cities)
        unvisited_cities.remove(next_city)
        tour.append(next_city)
        current_city = next_city
    # print(tour)
    return two_opt.two_opt(cities, tour)
コード例 #2
0
def solve(cities):
    N = len(cities)
    dist = [[0] * N for i in range(N)]

    for i in range(N):
        for j in range(i, N):
            dist[i][j] = dist[j][i] = distance(cities[i], cities[j])
    # print(dist)

    current_city = 0
    unvisited_cities = list(range(1, N))

    # always starting with the zero-th city
    tour = [current_city]

    # compare current node with each node in the tour
    # pick the node which is closest to current node
    # connect it to the closest node
    while unvisited_cities:
        # print(unvisited_cities)
        if len(tour) == 1:
            next_city = min(unvisited_cities,
                            key=lambda city: dist[current_city][city])
            unvisited_cities.remove(next_city)
            tour.append(next_city)
        else:
            current_node = unvisited_cities[0]
            closest_node = min(tour, key=lambda city: dist[current_node][city])
            tour.insert((tour.index(closest_node)) + 1, current_node)
            unvisited_cities.remove(current_node)

    # print(path_length(tour, cities))

    # print(tour)
    return two_opt.two_opt(cities, tour)
コード例 #3
0
ファイル: TSPSolver.py プロジェクト: mkumar23/Algorithm_TSP
def solver(argv):
    for i,x in enumerate(argv):
        if argv[i]=='-alg':
            algo=argv[i+1]
        elif argv[i]=='-inst':
            fileName=argv[i+1]
        elif argv[i]=='-time':
            cutoff=int(argv[i+1])
        elif argv[i]=='-seed':
            seed=int(argv[i+1])
#     fileName='ulysses16.tsp'
    G, optimalCost=createGraph(fileName)

    print optimalCost    
    if algo=='BnB':
        with open(fileName[:-4]+'_BnB_'+str(cutoff)+'.trace','w') as ftrace:
            tour,foundCost=branchAndBound(G,cutoff,ftrace)
    elif algo=='Approx':
        tour,foundCost=mst_approx(G)
    elif algo=='Heur':
        foundCost=greedy_approx(G)
    elif algo=='LS1':
        with open(fileName[:-4]+'_LS1_'+str(seed)+'_'+str(cutoff)+'.trace','w') as ftrace:
            tour,foundCost=simulated_annealiing(G,seed,cutoff,ftrace)
    elif algo=='LS2':
        with open(fileName[:-4]+'_LS2_'+str(seed)+'_'+str(cutoff)+'.trace','w') as ftrace:
            tour,foundCost=two_opt(G,cutoff,seed,ftrace)
    
    print tour,foundCost
コード例 #4
0
def solve(cities, k, dist):
    N = len(cities)
    # attempt farthest insertion
    # step 1: start with a subtour which contains arbitrary starting node
    # step 2: find the farthest node from sub tour


    current_city = k
    unvisited_cities = []
    for i in range(N):
        if i != k:
            unvisited_cities.append(i)


    sub_tour = [current_city]
    
    next_city = min(unvisited_cities,
                        key=lambda city: dist[current_city][city])
    # print(next_city)
    sub_tour.append(next_city)
    unvisited_cities.remove(next_city)
    sub_tour.append(current_city)
    # print(sub_tour)
    # here, sub_tour = [A, B, A]
    # find node k not in the subtour which is farthest from any node in the sub-tour
    while unvisited_cities:
        # selection step
        curr_node_r = min(unvisited_cities, key=lambda city: dist[city][sub_tour[0]])
        for i in range(1, len(sub_tour)):
            new_node_r = min(unvisited_cities, key=lambda city: dist[city][i])
            if new_node_r < curr_node_r:
                curr_node_r = new_node_r
        # print(curr_node_r)
        # insertion step
        # Find the edge (i, j) in the subtour which minimizes cir + crj - cij

        f = distance(cities[sub_tour[0]], cities[curr_node_r]) 
        + distance(cities[curr_node_r], cities[sub_tour[0 + 1]]) 
        - distance(cities[sub_tour[0]], cities[sub_tour[0 + 1]])
        insert_index = 0
        for i in range(len(sub_tour) - 1):
            if i == N - i - 1:
                continue
            new_f = distance(cities[sub_tour[i]], cities[curr_node_r]) 
            + distance(cities[curr_node_r], cities[sub_tour[i + 1]]) 
            - distance(cities[sub_tour[i]], cities[sub_tour[i + 1]])
            if new_f < f:
                f = new_f
                insert_index = i

        unvisited_cities.remove(curr_node_r)
        sub_tour.insert(insert_index + 1, curr_node_r)
        # print(sub_tour)

    tour = sub_tour[:-1]
    return two_opt.two_opt(cities, tour)
コード例 #5
0
ファイル: gls.py プロジェクト: phuchiss8838/gls_tsp
def main(argv):
    alpha = float(argv[1])
    coords, distances = tsplib.load(argv[2])
    count = len(distances)
    solution, best_cost = nearest_tour(distances, len(distances))
    plot = plotting.TspPlot(coords, draw_guess=True)
    print best_cost

    penalties = numpy.copy(distances)
    penalties[:] = 0.0

    def calc_cost(solution):
        cost = tsplib.calc_cost(solution, distances)
        sol_pens = penalties[solution[:-1], solution[1:]]
        gls_cost = (cost +
                    alpha *
                    (best_cost/count+1) *
                    (sol_pens.sum() + penalties[solution[-1], solution[0]]))
        return gls_cost

    def penalise(solution):
        sol_dists = distances[solution[0:-1], solution[1:]]
        sol_dists = numpy.append(sol_dists, (distances[solution[0], solution[-1]],))
        sol_pens = penalties[solution[0:-1], solution[1:]]
        sol_pens = numpy.append(sol_pens, (penalties[solution[0], solution[-1]],))
        utility = sol_dists/(sol_pens+1)
        index_a = numpy.argmax(utility)
        index_b = index_a+1 if index_a != count-1 else 0
        a = solution[index_a]
        b = solution[index_b] 
        penalties[a,b] += 1.0
        penalties[b,a] += 1.0

    def redraw_guess(solution, cost):
        cost = tsplib.calc_cost(solution, distances) # ugh
        plot.redraw_guess(solution, cost)

    gls_cost = cost = best_cost
    best_solution = numpy.copy(solution)
    plot.redraw_best(best_solution, cost)

    while 1:
        solution, gls_cost = two_opt(solution, gls_cost, len(distances), calc_cost, redraw_guess)
        cost = tsplib.calc_cost(solution, distances)
        if cost < best_cost:
            print cost
            best_cost = cost
            best_solution[:] = solution
            plot.redraw_best(best_solution, cost)
        penalise(solution)
コード例 #6
0
def solve(cities, k, dist):
    N = len(cities)

    current_city = k
    unvisited_cities = []
    for i in range(N):
        if i != k:
            unvisited_cities.append(i)
    tour = [current_city]

    while unvisited_cities:
        next_city = min(unvisited_cities,
                        key=lambda city: dist[current_city][city])
        unvisited_cities.remove(next_city)
        tour.append(next_city)
        current_city = next_city
    # print(tour)
    return two_opt.two_opt(cities, tour)
コード例 #7
0
ファイル: TSPSolver.py プロジェクト: mkumar23/Algorithm_TSP
def solver(argv):
    for i, x in enumerate(argv):
        if argv[i] == '-alg':
            algo = argv[i + 1]
        elif argv[i] == '-inst':
            fileName = argv[i + 1]
        elif argv[i] == '-time':
            cutoff = int(argv[i + 1])
        elif argv[i] == '-seed':
            seed = int(argv[i + 1])


#     fileName='ulysses16.tsp'
    G, optimalCost = createGraph(fileName)

    print optimalCost
    if algo == 'BnB':
        with open(fileName[:-4] + '_BnB_' + str(cutoff) + '.trace',
                  'w') as ftrace:
            tour, foundCost = branchAndBound(G, cutoff, ftrace)
    elif algo == 'Approx':
        tour, foundCost = mst_approx(G)
    elif algo == 'Heur':
        foundCost = greedy_approx(G)
    elif algo == 'LS1':
        with open(
                fileName[:-4] + '_LS1_' + str(seed) + '_' + str(cutoff) +
                '.trace', 'w') as ftrace:
            tour, foundCost = simulated_annealiing(G, seed, cutoff, ftrace)
    elif algo == 'LS2':
        with open(
                fileName[:-4] + '_LS2_' + str(seed) + '_' + str(cutoff) +
                '.trace', 'w') as ftrace:
            tour, foundCost = two_opt(G, cutoff, seed, ftrace)

    print tour, foundCost
コード例 #8
0
def solver(argv):
    for i,x in enumerate(argv):
        if argv[i]=='-alg':
            algo=argv[i+1]
        elif argv[i]=='-inst':
            fileName=argv[i+1]
        elif argv[i]=='-time':
            cutoff=int(argv[i+1])
        elif argv[i]=='-seed':
            seed=int(argv[i+1])
    G, optimalCost=createGraph(fileName)

    if algo=='BnB':
        with open(fileName[:-4]+'_BnB_'+str(cutoff)+'.trace','w') as ftrace:
            tour,foundCost=branchAndBound(G,cutoff,ftrace)
    elif algo=='Approx':
        tour,foundCost=mst_approx(G)
    elif algo=='Heur':
        tour,foundCost=greedy_approx(G)
    elif algo=='LS1':
        with open(fileName[:-4]+'_LS1_'+str(cutoff)+'_'+str(seed)+'.trace','w') as ftrace:
            tour,foundCost=simulated_annealiing(G,seed,cutoff,ftrace)
    elif algo=='LS2':
        with open(fileName[:-4]+'_LS2_'+str(cutoff)+'_'+str(seed)+'.trace','w') as ftrace:
            tour,foundCost=two_opt(G,seed,cutoff,ftrace)
    
    if algo=='LS1' or algo=='LS2':
        solutionFIleName=fileName[:-4]+'_'+algo+'_'+str(cutoff)+'_'+str(seed)+'.sol'
    else:
        solutionFIleName=fileName[:-4]+'_'+algo+'_'+str(cutoff)+'.sol'
        
    with open(solutionFIleName,'w') as fsol:
        if foundCost!=-1:
            fsol.write(str(foundCost)+'\n')
            tourString=','.join(list(map(str,tour)))+','+str(tour[0])+'\n'
            fsol.write(tourString)
コード例 #9
0
 def two_opt(self):
     improved_tour = two_opt(list(self.tour.numpy()),
                             self.tsp_problem.distances)
     self.tour = torch.tensor(improved_tour)