def parse_typ(json): if isinstance(json, Typ): return json if isinstance(json, str): assert len(json) > 0 return TypSymbol(json) if not json[0].islower() else TypVar(json) elif isinstance(json, int): return TypVar(json) elif isinstance(json, Sequence): args = tuple(parse_typ(x) for x in json) if len(args) == 3 and args[1] == T_ARROW: return TypTerm.make_arrow(args[0], args[2]) return TypTerm(args) else: raise ValueError("Unsupported input value %s" % json)
def recursive_subs_call_for_product_tail(self, j, typ_b, n): if TypTerm.is_internal_pair_typ(typ_b): if self.cache_subproducts: return self.subs(j, typ_b, n) else: # Ensures that intermediate sub-product results are not stored in cache return self.subs_product(j, typ_b, n) else: # typ_b is the last element of the whole product return self.subs(j, typ_b, n)
def successors_typed(self, gamma, n): alpha, n1 = new_var(self.typ, n) typ_f = TypTerm.make_arrow(alpha, self.typ) ret = [(App(UnfinishedLeaf(typ_f), UnfinishedLeaf(alpha), self.typ), sub.Sub(), n1)] for ctx_declaration in gamma.ctx.values(): fresh_res = fresh(ctx_declaration.typ, self.typ, n) mu = sub.mgu(self.typ, fresh_res.typ) if not mu.is_failed(): sigma = mu.restrict(self.typ) leaf = Leaf(ctx_declaration.sym, sigma(self.typ)) ret.append((leaf, sigma, fresh_res.n)) return ret
def subs_uf_ij(self, f_uf, x_uf, i, j, typ, n): ret = [] alpha, n1 = new_var(typ, n) typ_f = TypTerm.make_arrow(alpha, typ) for res_f in self.subs_uf(f_uf, i, typ_f, n1): typ_x = res_f.sub(alpha) for res_x in self.subs_uf(x_uf, j, typ_x, res_f.n): sigma_fx = sub.dot(res_x.sub, res_f.sub).restrict(typ) num_fx = res_x.num * res_f.num ret.append(sub.PreSubRes(num_fx, sigma_fx)) return ret
def ts_ij(gamma, i, j, typ, n): ret = [] alpha, n1 = new_var(typ, n) typ_f = TypTerm.make_arrow(alpha, typ) for res_f in ts(gamma, i, typ_f, n1): typ_x = res_f.sub(alpha) for res_x in ts(gamma, j, typ_x, res_f.n): sigma_fx = sub.dot(res_x.sub, res_f.sub).restrict(typ) tree_f = res_f.tree.apply_sub(res_x.sub) tree_fx = App(tree_f, res_x.tree, sigma_fx(typ)) ret.append(TsRes(tree_fx, sigma_fx, res_x.n)) return ret
def subs_ij(self, i, j, typ, n): # todo potvrdit ze funguje # tady se da zapnout stara implementace productu (nahrazeno pomoci subs_product volaneho v subs_compute) # if TypTerm.is_internal_pair_typ(typ): # return self.subs_internal_pair(i, j, typ, n) ret = [] alpha, n1 = new_var(typ, n) typ_f = TypTerm.make_arrow(alpha, typ) for res_f in self.subs(i, typ_f, n1): typ_x = res_f.sub(alpha) for res_x in self.subs(j, typ_x, res_f.n): sigma_fx = sub.dot(res_x.sub, res_f.sub).restrict(typ) num_fx = res_x.num * res_f.num ret.append(sub.PreSubRes(num_fx, sigma_fx)) return ret
def subs_internal_pair(self, i, j, typ, n): i_without_cons = i - 1 if i_without_cons == 0: return [] ret = [] typ_a, typ_b_0 = TypTerm.split_internal_pair_typ(typ) n = typ_b_0.get_next_var_id(n) for res_a in self.subs(i_without_cons, typ_a, n): typ_b = res_a.sub(typ_b_0) for res_b in self.subs(j, typ_b, res_a.n): sigma_ab = sub.dot(res_b.sub, res_a.sub).restrict(typ) num_ab = res_b.num * res_a.num ret.append(sub.PreSubRes(num_ab, sigma_ab)) return ret
def f(x, acc): return TypTerm.make_arrow(parse_typ(x), parse_typ(acc))